
Homework 5
Instructor: Mrinal Kumar Algebra & Computation-F21

Instructions

• This problem set will not be graded. You are encouraged to think about the problems and
talk to me if you have queries.

Problems

1. For natural numbers n, d ∈ N where d ≤ n, the elementary symmetric polynomial of degree
d on n variables, denoted by En,d is defined as

En,d(x0, x2, . . . , xn−1) =
∑

S⊆[n],|S|=d

∏
i∈S

xi .

Show that over every field F of size at least n + 1, there exist degree 1 polynomials {Li,j :
i, j ∈ [n]} such that

En,d =
∑
i∈[n]

∏
j∈[n]

Li,j .

Here [n] denotes {0, 1, . . . , n− 1}.

2. Recall the Trace : Fpk → Fp function from Homework 2. Show that if p = 2, then the
polynomial A(x) = Trace(x)(Trace(x) + 1) is zero for every x ∈ F2k .

Now, recall the Cantor-Zassenhaus algorithm for factoring univariate polynomials over finite
fields from the class. In the class, we only discussed the algorithm for fields of odd charac-
teristic. Use the polynomial A(x) above to get a variant of the Cantor-Zassenhaus algorithm
for finite fields of characteristic 2.

3. Let q be a prime power, k > 0 be a natural number and let S ⊂ Fqk be a subspace of Fqk
of dimension s, when we view Fqk as a k dimensional linear space over Fq. Consider the
polynomial PS(x) defined as

PS(x) =
∏
α∈S

(x− α) .

Show that there exist β1, β2, . . . , βs ∈ Fqk such that

PS(x) = xq
s

+ β1x
qs−1

+ β2x
qs−2

+ · · ·+ βsx .

Note the two features of PS : it is very sparse, but has a lot of roots in Fqk . If you recall,
Descarte’s rule of signs from high school algebra tells us that a sparse non-zero real polynomial
does not have a lot of real roots. These properties make PS a very useful polynomial to have
in many contexts.

4. Let B be a deterministic algorithm that takes as input an arithmetic circuit and correctly
outputs where B is identically zero or not in time polynomially bounded in the size and degree
of the input circuit.



Using the algorithm B above as a subroutine, design a deterministic algorithm that takes as
input an arithmetic circuit and correctly outputs a setting of the variables from the underlying
field where the circuit evaluates to a non-zero value, if such a setting exists. Moreover, this
algorithm should run in time polynomially bounded in the circuit size and degree.

It might be helpful to assume that the underlying field is large enough.

5. Design an algorithm that takes as input two arithmetic circuits C1 and C2 and decides if C1

divides C2 in time polynomially bounded in the sizes and degrees of the input circuits.

For simplicity you can assume that you are working over a large enough field and are working
in the unit cost model where every field operation can be done in unit time. Ideas from
Strassen’s division elimination that we saw in the class might be relevant.

6. Let P (x), Q(x) ∈ F[x] be relatively prime univariate polynomials over the field F and let
d = max(deg(P ),deg(Q)).

Let D be a multiple of d. Show that for every polynomial G(x) ∈ F[x] of degree at most
D − 1, there is a unique tuple (G0(x), G1(x), . . . , Gd−1(x)) of polynomials of degree at most
D/d− 1 such that

G(x) = Q(x)D/d−1 ·

(
d−1∑
i=0

Gi(P/Q) · xi
)
.

We saw a very special case of this when Q(x) = 1 and P (x) = x2 while discussing the Fast
Fourier transform in class.
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