Problem Set-2

Date : Oct 20 Due : Nov 17 CS229r :Arithmetic Circuits Fall 2017, Harvard University

- 1. Let $P \in \mathbb{F}[\mathbf{x}]$ be a degree d polynomial which is not identically zero. Let $S \subseteq \mathbb{F}$ be an arbitrary subset such that $|S| \geq d$. For a uniformly random $\mathbf{a} \in S^n$, show that $P(\mathbf{a}) = 0$ with probability at most $\frac{d}{|S|}$.
- 2. For this problem, we work over a large enough field \mathbb{F} . Assume that we have access to an oracle, which takes as input an arithmetic circuit C and correctly tells us if C is identically zero or not. Using this oracle, design an algorithm with the following properties.
 - It takes as input parameters d, n and an arithmetic circuit C of degree d in n variables.
 - If C is not identically zero, then it outputs a point $\mathbf{a} \in \mathbb{F}^n$ such that $C(\mathbf{a}) \neq 0$.
 - It runs in time poly(n, d, size(C)).
- 3. Recall the notion of Newton identities we saw in the class. Using Newton identities, show that over fields of characteristic zero, the monomial $x_1 \cdot x_2 \cdots x_n$ can be computed by a depth-4 powering circuit (a depth-4 circuit where every product gate is a powering gate) of size at most $2^{O(\sqrt{n})} \operatorname{poly}(n)$. You might need to use the fact that the number of non-negative integral solutions of $\sum_{i=1}^{n} a_i \cdot i = d$ is $(2^{O(\sqrt{d})})$.
- 4. Using the ideas in the above problem, show that over fields of characteristic zero, if a homogeneous polynomial of degree d in n variables can be computed by a (possibly non-homogeneous) depth-3 circuit of size s, then it can be computed by a homogeneous depth-5 circuit of size at most $2^{O(\sqrt{d})} \operatorname{poly}(s, d, n)$.
- 5. Over the field of complex numbers, show that if a homogeneous polynomial P of degree d in n variables can be computed by a circuit of size poly(n), then it can be computed by a (possibly non-homogeneous) depth-4 circuit of size $n^{O(d^{1/3})}$.