
Problem set 2
Date: March 10, 2021 Error Correcting Codes-S21
Instructor: Mrinal Kumar Due: April 04, 2021

Instructions

• Please type the soutions neatly in LATEXand submit the pdf. If you need to draw any pictures,
feel free to do them by hand and attach the pictures.

• Discussion on the problems with other members of the class is permitted and to an extent,
even encouraged. But, you must write the solutions on your own. You must also acknowledge
any discussions you might have had with others separately for every problem.

• Please do not look up solutions on the internet or in other references. In case you use any
sources outside the notes for this course, again properly acknowledge them.

• To get the most out of the problem sets, you are encouraged to think about the problems
on your own before discussing them with others, consulting the references or looking at the
hints (which some of the problems might have).

• For late submissions, you lose 20% of the points for every day after the deadline.

• The first problem is due to Prahladh Harsha.

• There are some bonus problems here, which you do not have to necessarily turn in, although
you are strongly encouraged to think about them.

Problems

1. Let F be a finite field of size q. A set K ⊆ Fm is said to be a Kakeya set if K contains a line
in every direction, i.e., for every a ∈ Fm, there exists a vector b ∈ Fm such that the set

La,b = {b + t · a : t ∈ Fq}

is contained in the set K. Note that the set La,b is indeed a line (a one dimensional affine
space) contained in Fm. Clearly, the whole set Fm is a Kakeya set. The goal of this problem
is to use the polynomial method based techniques we saw in the class to conclude that there
cannot be Kakeya sets that are much smaller in size than qm. Intuitively, the regime of
parameters we are interested in is when q is growing, and m is something much smaller
than q. We will show that any Kakeya set K has size at least

(
q+m−1
m

)
. The proof is via

contradiction. Suppose that K̃ is a Kakeya set of size strictly smaller than
(
q+m−1
m

)
.

(a) (10 points). Show that there exists an m variate polynomial Q ∈ Fq[x] of total degree
d, with d < q such that Q(c) = 0, for every c ∈ K̃.

(b) (10 points). For an a = (a1, a2, . . . , am) ∈ Fm, let b = (b1, b2, . . . , bm) ∈ Fm be such
that the line La,b is contained in K̃. Now, consider the restriction of Q on the line La,b,
which is the univariate polynomial

Pa,b(T ) := Q(b + T · a) = Q(T · a1 + b1, T · a2 + b2, . . . , T · am + bm) .

Show that Pa,b(T ) must be identically zero.



(c) (5 points). Let Qd be the homogeneous component of Q of degree equal to d. We
know that Qd is a non-zero homogeneous polynomial of degree d < q. Show that the
coefficient of T d in Pa,b(T ) is equal to Qd(a).

(d) (5 points). Conclude that Qd must be identically zero.

(e) (5 points). Combine the above parts to arrive at a contradiction and conclude that the
K̃ cannot have size less than

(
q+m−1
m

)
.

2. In this question, we will see a list decoding algorithm for codes which are closely related to
Reed-Solomon codes. We have parameters n, k, s and we work over a field F of size at least
n and characteristic larger than k or zero. Let α1, . . . , αn be distinct elements of F. The
message space is again the space of univariate polynomials of degree at most k − 1 over F.
The encoding of a polynomial f ∈ F[x] is given by the function Enc : F[x] → (Fs)n, defined
as follows:

Enc(f) =

(
f(αi),

∂f

∂x
(αi), . . . ,

∂s−1f

∂xs−1
(αi)

)n
i=1

.

In other words, the alphabet of the code is Fs and the encoding outputs an n length vector
over Fs where the ith coordinate contains the evaluation of f and all its derivatives of order
up to s− 1 on the input αi.

We will now see a list decoding for these codes closely related to the algorithm that we saw
in the class for Folded Reed-Solomon codes. As an input, we have a received word b ∈ (Fs)n,
where for every i ∈ {1, 2, . . . , n} the ith coordinate of b is denoted by bi = (bi,0, . . . , bi,s−1).

(a) (5 points).What is the rate and distance of this code, as a function of n, k, s ?

(b) (15 points). Let m < s be a parameter. As a first step, show that for every choice of
field constants γ = {γj0,j1 : j0, j1 ∈ {0, 1, . . . , s−m}} ⊆ F, there is a non-zero polynomial
Qγ(x, y0, y1, . . . , ym−1) of the form Qγ := Q0(x)y0 + . . . + Qm−1(x)ym−1 such that the
following conditions hold.

• Degree of Qγ is at most D ≤ n(s−m+1)
m

• For every i ∈ {1, 2, . . . , n}

Q0(αi)bi,0 + . . .+Qm−1(αi)bi,m−1 = 0

• For every i ∈ {1, 2, . . . , n} and ` ∈ {1, 2, . . . , s−m}, we have

m−1∑
j=0

(∑̀
`′=0

γ`′,` ·
∂`
′
Qj

∂x`′
(αi) · bi,j+`−`′

)
= 0 ,

where, we follow the notation that
∂0Qj

∂x0
= Qj .

(c) (10 points). Show that there exists a choice of the constants γ for which the following
is true: if f is a polynomial in F[x] of degree at most k − 1 such that there exists an
i ∈ {1, 2, . . . , n}, with

bi =

(
f(αi),

∂f

∂x
(αi), . . . ,

∂s−1f

∂xs−1
(αi)

)
,

then, the univariate polynomial R(x) = Qγ

(
x, f, ∂f∂x , . . . ,

∂s−1f
∂xs−1

)
vanishes with multiplic-

ity at least s−m at αi.

Moreover, note that this correct choice of constants γ can be efficiently computed.
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(d) (5 points). Conclude that if the number of coordinates i, where b and Enc(f) agree is
at least D+k−1

s−m , then R(x) must be identically zero.

All that remains now for algorithmic list decoding of these codes is to be able to solve equations

of the form
∑m−1

j=0 Qj(x)∂
jf
∂xj

= 0 to recover all possible solutions f of degree at most k − 1.
Similar to what we saw for Folded Reed-Solomon codes, note that the space of solutions
of this equation is again a linear space over F, and it suffices to prove an upper bound on
the dimension of this space, and get our hands on a basis for the subspace. We will again
try to recover f one coefficient at a time, but slightly differently to what we did for Folded
Reed-Solomon codes. First observe that since Qγ is a non-zero polynomial, there must exist
a j such that Qj is non-zero. Let m0 be the largest integer such that Qm0 is non-zero. Now,
observe that there must be an a ∈ F such that Qm0(a) is non-zero. So, instead of recovering
f(x) directly, we will recover f(x + a) one coefficient at a time. From R(x) = 0, we can
replace x by x+ a everywhere, to get

R(x+ a) = Qγ

(
x+ a, f(x+ a),

∂f

∂x
(x+ a), . . . ,

∂m−1f

∂xm−1
(x+ a)

)
= 0 .

(e) (Bonus). In this equation, chase down the coefficients of monomials of degree 0, 1, . . . , k−
1 and notice that each of them must be equal to zero. Using this, argue that given the
coefficients of degree 0, 1, . . . ,m− 2 in f(x+ a), we can recover f(x+ a) uniquely. As a
consequence, conclude that the linear space of solutions has dimension at most m− 1.

(f) (Bonus). Combine the parts together to conclude that given any ε > 0, there is a
choice of s,m such that the resulting code as constructed above is algorithmically list
decodable even when the fraction of errors is δ − ε, where δ is the relative distance of
the code.

(f) (Bonus). Where did the characteristic of the field play a role in the list decoding
algorithm described above ? Consider the small chatacteristic analog of the above codes,
where we replace the derivatives in the definition by Hasse derivatives. Are the resulting
codes list decodable from δ − ε errors ?
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