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Abstract

We show that for every homogeneous polynomial of degree d, if it has determinantal com-
plexity at most s, then it can be computed by a homogeneous algebraic branching program
(ABP) of size at most O(d5s). Moreover, we show that for most homogeneous polynomials, the
width of the resulting homogeneous ABP is just s− 1 and the size is at most O(ds).

Thus, for constant degree homogeneous polynomials, their determinantal complexity and
ABP complexity are within a constant factor of each other and hence, a super-linear lower
bound for ABPs for any constant degree polynomial implies a super-linear lower bound on de-
terminantal complexity; this relates two open problems of great interest in algebraic complexity.
As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree
[Kum19, CKSV22], and for determinantal complexity the best lower bounds are larger than the
number of variables only by a constant factor [KV22].

While determinantal complexity and ABP complexity are classically known to be polyno-
mially equivalent [MV97], the standard transformation from the former to the latter incurs a
polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound
for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size
preserving transformation from determinantal complexity to ABPs does not appear to have been
known prior to this work, even for constant degree polynomials.

1 Introduction

1.1 Super-linear Lower Bounds in Complexity Theory
Perhaps the principal embarrassment of complexity theory at the present time is its failure
to provide techniques for proving non-trivial lower bounds on the complexity of some of the
commonest combinatorial and arithmetic problems. To add further to the embarrassment, the
previous sentence is a direct quote from Valiant’s 1975 paper [Val75], and yet it is true today
as it was the day it was written, nearly 50 years ago: we are still unable to prove, for example,
a super-linear circuit lower bound for a problem in NP.

Proving such lower bounds for boolean circuits is a major open problem in complexity theory
(even for circuits of depth O(log n)), but such an analogous result is known in the model of
algebraic circuits, that compute multivariate polynomials using arithmetic operations. Baur
and Strassen [Str73, BS83] proved that computing the degree-d power sum polynomial

∑n
i=1 x

d
i ,

for instance, requires circuits of size Ω(n log d), which is super-linear in n assuming d = ω(1).
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As evident from the statement of the result (and even more so from the proof technique),
this result crucially relies on the fact that the polynomial being computed is of high degree. It
remains an interesting open problem to prove super-linear lower bounds for algebraic circuits
computing constant degree polynomials (see [Raz10] for a discussion on the importance of this
problem). In fact, even the case of computing linear transformations has attracted significant
attention (see, e.g., [Val77, SS97, Lok09]).

1.2 Algebraic Branching Programs
Circuits are the most powerful model of algebraic computation, and therefore one may consider
first solving this challenge in easier settings. A formula is a circuit whose underlying graph is a
tree. Kalorkoti [Kal85] developed a technique for proving super-linear lower bounds for algebraic
formulas (based upon Nechiporuk’s method which applies to Boolean formulas [Nec66]). This
technique can be used to prove lower bounds as large as Ω(n2/ log n) for mutilinear polynomials
of degree n (as discussed in [CKSV22], in the model of algebraic formulas it is natural to
consider multilinear polynomials since allowing polynomials of large individual degree results in
some trivial lower bounds). This lower bound is slightly improved in [CKSV22], using a different
technique, to Ω(n2). It is fairly straightforward to apply Kalorkoti’s method to constant degree
polynomials as well and obtain super-linear lower bounds.

Lying between formulas and circuits is the model of algebraic branching programs (or ABPs,
which are defined formally in Section 2). The best lower bound known for ABPs is Ω(nd)
[CKSV22], which is again only super-linear when the degree d is super-constant. Interestingly, in
the analogous boolean model of branching programs (even parity or non-deterministic branch-
ing programs, which are arguably a better suiting analog of algebraic branching programs),
Nechiporuk’s method can be used to show super-linear lower bounds (see, e.g., [KW93]). In
the algebraic setting, however, the ability to label a single edge of the program by an arbitrary
linear function of the variables seems like a challenge to this technique. Therefore, it is still an
open problem to prove super-linear lower bounds for constant-degree polynomials, not only for
circuits but even for algebraic branching programs.

The family of multivariate polynomials that can be computed by ABPs of polynomial size
form the complexity class VBP. One notable member of this class is the determinant polynomial,
Det(X) =

∑
σ∈Sn

∏n
i=1 xi,σ(i). It is, in fact, a rather distinguished member of this class: perhaps

the most natural way to define “reductions” between polynomials is to consider linear projections
of the variables, and under this class of reductions the determinant is a complete polynomial
for VBP, namely, every polynomial in this class can be efficiently reduced to the determinant
(see, e.g., [Sap15] for a proof of this fact). Arguably, the fact that determinants are ubiquitous
in mathematics can be attributed to this completeness result, as any polynomial with a small
branching program (and in particular, any polynomial with a small formula) is just a determinant
in disguise.

1.3 Determinantal Complexity
The discussion in the previous paragraph implies that one can equivalently define VBP us-
ing determinantal representations. A determinantal representation of size s for a polynomial
f ∈ F[x1, . . . , xn] is an s×s matrix M whose entries are linear functions1 in x1, . . . , xn such that
Det(M) = s. The completeness result mentioned above in particular implies that the determi-
nantal complexity of every polynomial is finite, and also motivates studying the determinantal
complexity of polynomials as a natural complexity measure of its own.

1Throughout this text when we use the term “linear functions” to include affine functions as well. When we insist
that the constant term is zero, we make it explicit by referring to homogeneous linear functions.
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For a polynomial f , let dc(f) denote its determinantal complexity, that is, the minimal s
such that f has a determinantal representation of size s. By the discussion above, proving that
the determinantal complexity of a sequence of polynomials {fn} is super-polynomial (in the
number of variables n) immediately implies that this sequence is not in VBP. The sad reality,
however, is that we don’t know a single explicit sequence of polynomials whose determinantal
complexity is super-linear (it is easy to show that this quantity is exponential for a “generic”
polynomial, or even a random polynomial with 0/1 coefficients). The best lower bound, as a
function of the number of variables n, is roughly 1.5n, proved by Kumar and Volk [KV22].
Also worth mentioning is the lower bound of Mignon and Ressayre [MR04], who proved that
the determinantal complexity of the n × n permanent over fields of characteristic 0 is at least
n2/2. This result was extended to characteristics different than 2 by Cai, Chen and Li [CCL10]
(over characteristic 2, the permanent and determinant coincide). Note however that the n× n
permanent is a polynomial in n2 variables, so this lower bound isn’t super-linear in the number
of variables, and in fact, it seems challenging to extend their technique to prove a lower bound
which is larger than the number of variables. We refer to the introduction of [KV22] for further
discussion on this subject.

The super-linear lower bounds for algebraic branching programs (or even circuits) don’t
imply super-linear lower bounds on determinantal complexity, as the known reductions to the
determinant incur a polynomial blow-up in the size parameter: that is, a polynomial computed
by a size-s ABP also has a determinantal representation of size poly(s)× poly(s), but if the best
lower bound we can give on s is slightly super-linear, the lower bound we get on the size of the
determinantal representation isn’t super-linear in n.

1.4 Our Contributions
We relate here the two problems mentioned above, of proving lower bounds for constant degree
polynomials and proving lower bounds for determinantal complexity, by reducing one to the
other. Our main result is that proving a super-linear lower bound on the ABP complexity
of a homogeneous constant-degree polynomial would imply a super-linear lower bound on its
determinantal complexity. The other direction of this reduction is already known: a polynomial
that has a size-s ABP can be written as the determinant of an s × s matrix whose entries are
linear functions [Sap15], so a super-linear lower bound on dc(f) also implies a lower bound on
its ABP complexity.

We prove this reduction by constructing an ABP of size poly(d) · s for any homogeneous
polynomial that has a size-s determinantal representation.

Theorem 1.1 (Informal). Let f be a homogeneous polynomial that has a size-s determinantal
representation. Than f has an ABP of size poly(d) · s.

The formal statement of Theorem 1.1 appears as Theorem 4.1 in Section 4.
We stress again that while the fact that any polynomial with small determinantal represen-

tation has a small ABP isn’t new, the known reductions from determinants to ABPs (which are
simply constructions of algebraic branching programs for the determinant, e.g., [Ber84, MV97])
all result in ABPs of size s1+c for some c > 0. Thus, Theorem 1.1 gives a more efficient reduction
when d is small, and in particular we have the following corollary.

Corollary 1.2. Let f = {fn} be a family of homogeneous polynomials of constant degree. Then
a super-linear lower bound on the ABP complexity of f implies a super-linear lower bound on
the determinantal complexity of f .

Theorem 1.1 applies for every constant degree polynomial. It turns out, however, that for
“most” polynomials we can construct a reduction which is simultaneously simpler and more
efficient. We first explain what do we mean by “most” polynomials. The singular locus of a
homogeneous polynomial f is the variety defined by the common zeros of its first order partial
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derivatives. This variety is defined by n polynomials and thus for a “generic” homogeneous
polynomial f , one expects this variety to be zero-dimensional. There are, of course, notable
exceptions. For the n × n determinant polynomial, for example (that has n2 variables), this
variety has dimension exactly n2 − 4 (see [vzG87]).

Having a singular locus whose dimension is strictly less than n−4 imposes powerful structure
on the determinantal representations which we are able to use in order to prove:

Theorem 1.3 (Informal). Let f be a homogenous polynomial such that its singular locus has
dimension less than n − 4, and f has a size-s determinantal representation. Than f has an
ABP of width s− 1 and size at most ds.

The formal statement of Theorem 1.1 appears as Corollary 3.2 (of Theorem 3.1) in Section 3.
The structure that we exploit to prove Theorem 1.3 is the fact that for polynomials whose

singular locus has dimension less than n−4, it holds that the constant part of any determinantal
representation must be of rank s − 1 (this fact was discovered by [vzG87] and is also used in
the determinantal complexity lower bounds of [ABV17] and [KV22]: see Observation 2.6 in
Section 2). This motivated Landsberg and Ressayre [LR17] to define the notion of regular
determinantal complexity. A determinantal representation is said to be regular if its constant
part has rank s − 1, and the regular determinantal complexity of a polynomial f is the size
of its smallest regular determinantal representation. Another motivation for this definition
comes from the fact that the natural reductions from formulas and ABPs to determinantal
representations give regular determinantal representations. Theorem 3.1 shows that the notions
of regular determinantal complexity and ABP complexity are essentially equivalent, since the
relation between the size of the regular determinantal representation and the width of the ABP
is particularly sharp.

We stress again that “almost all” polynomials satisfy the assumption of Theorem 1.3. In
particular, it seems conceivable that most proof techniques that would imply a lower bound for
ABPs will be applicable to at least one polynomial with a small dimensional singular locus, so
that we can apply Theorem 1.3 to obtain lower bounds on its determinantal complexity.

A final remark is in order regarding the homogeneity assumptions in Theorem 1.1 and The-
orem 1.3. We don’t see it as a major hurdle towards proving lower bounds using our reduction.
Most polynomials studied in algebraic complexity (such as the determinant, permanent, ele-
mentary symmetric polynomials, power sum polynomials, iterative matrix multiplication, and
so on) are homogeneous to begin with, and we are not aware of a single technique for proving
lower bounds that uses non-homogeneity in a crucial way, so it seems conceivable again that
most proof techniques for lower bounds would apply to homogeneous polynomials just as well.

Nevertheless, it is still an assumption, and one may try to eliminate it, if only for purely
aesthetic reasons. One natural way to go about it is to try to handle each homogeneous compo-
nent of f separately, apply our transformation to obtain an ABP, and then assemble the ABPs
computing each homogeneous component to an ABP computing the sum.

Such an approach indeed works in other contexts in algebraic complexity theory, where
non-homogeneity is rarely an issue when studying strong models of computation such as ABPs
and circuits. These models can be efficiently homogenized: namely, given a possibly non-
homogeneous circuit or ABP computing a polynomial f , one can find, for each homogeneous
component of f , a circuit (or ABP) that computes it, whose size is bigger than the original size
only by a multiplicative factor which depends polynomially on the degree d (even further, one
can find a single circuit or ABP with multiple outputs, that simultaneously computes all the
homogeneous components, with similar size guarantees). One can then handle each homogeneous
component of f separately. Thus, when one considers super-polynomial lower bounds this is
never an issue, and for the question of proving super-linear lower bound this isn’t a problem if
d is a constant.

Curiously enough, however, we don’t know if the same can be done for determinantal repre-
sentation. While it is true that if f has a size s determinantal representation then each of its ho-
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mogeneous component has a determinantal representation of size poly(s, d) (where d = deg(f)),
the proof for this fact involves first converting the determinantal representation to an ABP us-
ing, for example, the reductions of [MV97, Ber84], homogenizing the ABP, and converting the
ABP back to a determinantal representation. This results in a size blow-up which is super-linear
in s (due to the first step of the transformation), which makes it unsuitable for us.

A similar issue arises when one considers determinantal complexity of sums of polynomials,
which leads to the question of whether dc(f+g) ≤ dc(f)+dc(g) (or perhaps the inequality holds
up to a constant factor). It is easy to see that dc(f ·g) ≤ dc(f)+dc(g) (just take a block matrix),
and using the conversion to ABPs it’s also easy to conclude that dc(f + g) = poly(dc(f), dc(g)),
but as most natural models of computation have the stronger subadditivity property, it would
be interesting to prove it (or disprove it) for determinantal complexity.

2 Preliminaries
In this section we give definitions of some of the notions we use later, and state some basic
results.

We start by defining the singular locus of a polynomial.
Definition 2.1. Let f ∈ F[x] be a polynomial. The hypersurface defined by f , V (f), is the set
of points a such that f(a) = 0. The singular locus of f , Sing(f) is the variety defined by

Sing(f) =

{
a ∈ V (f) :

∂f

∂xi
(a) = 0, 1 ≤ i ≤ n

}
. ♢

We briefly remark that some previous related papers (such as [CKSV22, KV22]) defined
the singular locus as simply the set of common zeros of the first order partial derivatives of f ,
without requiring that they are also zeros of f . In this context this is a minor distinction that
has no significance on the results of [CKSV22, KV22] or the results of this paper. However in
Section 5 we consider a generalization of Definition 2.1 to higher order derivatives and thus it
is slightly more elegant to use the definition above.

Fact 2.2 ([vzG87]). Let F be an algebraically closed field and let Detm be the m×m determinant
polynomial. Then Sing(Detm) ⊆ Fm×m is precisely the set of matrices of rank at most m − 2,
and dimSing(Detm) = m2 − 4.

We also require the following elementary and well known identity.

Lemma 2.3. Let M ∈ Fm×m be a matrix over a field F and let A,B,C,D be submatrices of M
of dimension k × k, k × (m− k), (m− k)× k and (m− k)× (m− k) respectively, such that

M =

(
A B
C D

)
.

If the matrix D is invertible, then

Det(M) = Det(A−BD−1C) · Det(D) .

2.1 Determinantal Complexity
We now define the determinantal complexity of a polynomial f .
Definition 2.4. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d. A determinantal representa-
tion of f of size s is an s× s matrix M , whose entries are linear functions in x1, . . . , xn, such
that Det(M) = f . We denote by dc(f) the minimal integer s such that f has a determinantal
representation of size s.
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A determinantal representation M of f is said to be regular if the constant part M0 of M
(i.e., M(0)) is of rank s − 1. We denote by rdc(f) the minimal integer s such that f has a
regular determinantal representation of size s. ♢

The fact that the determinantal complexity is finite for every polynomial f was established
by Valiant [Val79]. As explained in [LR17], the same proof establishes the fact that the regular
determinantal complexity is also finite (as several of the proofs of Valiant’s theorem construct
regular determinantal representations).

In fact, the following lemma of von zur Gathen [vzG87] shows that for “most” homogeneous
polynomials one may consider regular determinantal representations without loss of generality.
We refer to [vzG87, ABV17, KV22] for proofs of this fact, and [LR17] for some related discussion.

Lemma 2.5. Let f ∈ F[x] be a polynomial, and let M : Fn → Fs×s be a polynomial map
such that f(x) = Dets(M(x)). Suppose further that dim(Sing(f)) < n − 4. Then Im(M) ∩
Sing(Dets) = ∅. Furthermore, all matrices in Im(M) have rank at least s− 1.

An easy consequence of this lemma is the following observation.

Observation 2.6. Let f ∈ F[x] be a polynomial whose constant term is zero. Further assume
that dim(Sing(f)) < n− 4. Then any determinantal representation of f must be regular.

Proof. Let f has a determinantal representation M of size s. As dim(Sing(f)) < n − 4, using
Lemma 2.5 we know that all matrices in Im(M) have rank at least s − 1. In particular, M(0)
is of rank ≥ s − 1. M(0) can not be of full rank as f has a zero constant term, so f(0) =
Det(M(0)) = 0. Therefore, the rank of M(0) is exactly s− 1 and M is a regular determinantal
representation of f .

2.2 ABP complexity
We now define the ABP complexity of a polynomial f . As our work deals with the fine notions
of complexity (rather than separating polynomial size from super polynomial size), we take care
to account for the various subtleties concerning the definition.
Definition 2.7. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d. We say f has an algebraic
branching program (ABP) of width w and size s if

f = bTM1 ·M2 · · ·Mkc,

where b ∈ Fw0 and c ∈ Fwk are vectors whose entries are linear functions in x1, . . . , xn, for
every i ∈ [k], Mi ∈ Fwi−1×wi are matrices whose entries are linear functions in x1, . . . , xn, and
the following properties hold:

1. wi ≤ w for all 0 ≤ i ≤ [k]

2.
∑k

i=0 wi ≤ s.

We say that the ABP is homogeneous if all functions appearing in b, c and the Mi’s are homo-
geneous.

We denote by abp(f) the minimal s such that f has a size-s ABP (of any width), and by
abpw(f) the minimal w such that f has a width-w ABP (of any size). We similarly use habp(f)
and habpw(f) for the homogeneous variants of these notions. ♢

Definition 2.7 is an algebraic definition. Equivalently, one may define algebraic branching
programs in a graph-theoretic equivalent way, as a labeled, layered and directed acyclic graph,
with a source and a sink, in which the matrices above correspond to the adjacency matrices
between one layer to the next. The graph theoretic definition is more convenient when one
considers operations on ABPs such as taking their sum or their product, homogenizing them or
composing them. Note that our measure of “size” counts vertices and not edges.
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Note that for a homogeneous polynomial f , abp(f) ≤ habp(f) ≤ (d+ 1) · abp(f), where the
first inequality is trivial and the second follows by a standard homogenization argument, and a
similar inequality holds for ABP width. More formally, we have the following lemma.

Lemma 2.8 (Partial homogenization of ABPs). Let A be an ABP of size s and width w comput-
ing a polynomial f of degree ∆. Then, for every d ∈ {0, 1, . . . ,∆}, there exists a homogeneous
ABP Ãd of size at most s(d + 1) and width at most w(d + 1) that computes the homogeneous
component of degree d of f .

Finally, note that in a homogeneous ABP we must have exactly d+1 layers, and habp(f) ≤
(d+ 1) · habpw(f).

We also use the following result of Mahajan and Vinay [MV97] who showed that determinants
have small ABPs.

Theorem 2.9 ([MV97]). For every field F and all n ∈ N, the polynomial Detn can be computed
by an ABP of width n2 and (n+ 1) layers, and thus total size O(n3).

3 Algebraic Branching Programs from Regular Determi-
nantal Representation
In this section we prove our results for regular determinantal representations. Recall again that
by Observation 2.6, for “most” polynomials, one may consider regular representations without
loss of generality, as all of their determinantal representation are regular.

The following theorem states that the regular determinantal complexity of a homogeneous
polynomial f is an upper bound on its homogeneous ABP width.

Theorem 3.1. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
rdc(f) = s. Then habpw(f) ≤ s− 1 (and in particular, abp(f) ≤ habp(f) = O(ds)).

As an immediately corollary of Observation 2.6 and Theorem 3.1, we obtain:

Corollary 3.2. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2 such that
dim(Sing(f)) < n− 4. Then habpw(f) ≤ s− 1 (and in particular, abp(f) ≤ habp(f) = O(ds)).

Proof of Theorem 3.1. Let M(x) be a regular determinantal representation of f of size s, that
is, Det(M) = f . Write M = M ′(x) + M0 where M0 is the constant part of M , which is
of rank s − 1, and M ′ is a matrix whose entries are homogeneous linear functions. As in
[vzG87, ABV17, KV22], by applying elementary row and column operations we may assume
that M0 = diag(0, 1, . . . , 1). Thus, we can write M in blocks as

M =

[
a bT

c I −D

]
where a(x) is a homogeneous linear polynomial, b, c ∈ Fs−1 are vectors of homogeneous linear
polynomials, and D ∈ F(s−1)×(s−1) is a matrix of homogeneous linear polynomials. We now
claim that f = −bT (Dd−2)c, which implies the statement of the theorem.

To see this, note that I −D is an invertible matrix over F(x) (indeed, its determinant is a
polynomial whose constant term is 1, so it is non-zero), and therefore by Lemma 2.3,

f = Det(M) = Det(I −D) ·Det(a− bT (I −D)−1c) = Det(I −D) · (a− bT (I −D)−1c). (3.3)

The last equality follows from the fact that a− bT (I −D)−1c is a 1× 1 matrix.
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We write Det(I −D) = 1+R where R is a polynomial whose constant term is zero. We also
note that we can expand (I −D)−1 as a power series (I −D)−1 = I +D +D2 +D3 + · · · over
the ring of formal power series F[[x]], and thus,

(a− bT (I −D)−1c) = a− bT Ic−
∑
i≥1

bTDic

(this equality holds in the ring F[[x]]).
In particular, the homogeneous component of degree 0 of the power series above is zero, the

degree one homogeneous component is a, degree two homogeneous component is bT c and for
every i > 2, the degree i homogeneous component equals bTDi−2c.

Plugging this into (3.3), we get

f = (1 +R) ·

a− btIc−
∑
i≥1

bTDic

 (3.4)

Recall that f is a homogeneous polynomial of degree d ≥ 2. We shall now compare the
homogeneous components of both sides in (3.4).

Note that since the constant term of 1 + R is 1, we have that if k is the smallest natural
number such that the degree k homogeneous component of the right hand side of (3.4) is non-
zero, then this homogeneous component must equal the degree k homogeneous component of
(a− btIc−

∑
i≥1 b

TDic).
If f is homogeneous, then the lowest degree homogeneous component of the right hand side

of (3.4) that is non-zero must have degree equal to d, and must equal f . Moreover, since
deg(f) ≥ 2, we get that

f = −bT (Dd−2)c .

Thus, −bTDd−2c is a homogeneous ABP that computes f and has the properties claimed in
the lemma.

The ABP constructed in the proof of Theorem 3.1 has a very special structure. Apart from
the first and last layers, all the middle layers are identical and have the same transition matrix
D. Further, b, c and D satisfy the equations bTDic = 0 for all 0 ≤ i ≤ d − 3. Hence, for the
sake of proving super-linear lower bounds on determinantal complexity, one may focus on ABPs
that have this structure, although it’s not clear (to us) how to utilize this additional structure
to get stronger lower bounds.

4 Algebraic Branching Programs for All Homogeneous Poly-
nomials
In this section we generalize the construction given in Section 3 and construct ABPs of size
s · poly(d) for all homogeneous degree-d polynomials.

Theorem 4.1. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d. Suppose dc(f) =
s. Then habp(f) ≤ O(d5 · s).

We begin as before by putting the determinantal representation of f in a convenient normal
form.

Claim 4.2. Let f be a homogeneous polynomial over F of degree d ≥ 2 and M an s × s
determinantal representation of f over F. Write M = M ′ +M0 where M0 is the constant part
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of M , and denote rank(M0) = s − r. Then r ≥ 1, and if r < s, there exists a matrix M̃ , with
det(M̃) = f such that

M̃ =

[
A B
C I −D

]
(4.3)

where A ∈ Fr×r, B ∈ Fr×(s−r), C ∈ F(s−r)×r, D ∈ F(s−r)×(s−r), A,B,C,D are matrices whose
entries are homogeneous linear functions, and I is the (s− r)× (s− r) identity matrix.

Before proving Claim 4.2, we note that the case r = s is rather uninteresting: indeed, if r = s
then M is a matrix of homogeneous linear functions such that Det(M) is a homogeneous poly-
nomial of degree d, which implies that s = d, which in turn makes the contents of Theorem 4.1
trivial by applying the ABP construction of [MV97] (Theorem 2.9) directly to M .

Proof. Since f is homogeneous of degree d ≥ 1 we must have r ≤ s−1 as otherwise Det(M) would
have a non-zero constant term. The proof again follows simply by applying Gaussian elimination
on the rows and columns of M , so that we may assume that M0 = diag(0, . . . , 0, 1, . . . , 1) where
the number of 0’s is r and the number of 1’s is s − r, which implies equation (4.3) by defining
A,B,C,D appropriately.

As a corollary, we obtain the following:

Corollary 4.4. Let f be a homogeneous polynomial over F of degree d ≥ 2 and M an s × s
determinantal representation of f over F in normal form as in (4.3). Expand

A−B(I −D)−1C = A−B

∑
i≥0

Di

C = A−
∑
i≥0

BDiC

as matrices over the ring F[[x]] of powers series in x .
Then, the lowest degree non-zero homogeneous component of Det(A −

∑
i≥0 BDiC) is of

degree d and equals f .

Proof. Note that Det(I −D) is a polynomial whose constant term is 1, i.e., Det(I −D) = 1+R
where R is a constant-free polynomial. Thus implies that I −D is invertible, and therefore by
Lemma 2.3,

f = Det(M) = Det(I −D) · Det(A−B(I −D)−1C) = (1 +R) · Det(A−B(I −D)−1C).

In the power series expansion Det(A−B(I−D)−1C) = h+Q, where h is the lowest degree non-
zero homogeneous component of the powers series and Q is either 0 or a power series containing
only monomials of degree strictly larger than deg(h). Then

f = (1 +R) · (h+Q) = h+ P

where P = Q + Rh + RQ is either 0 or contains only monomials of degree strictly larger than
deg(h). Since f is homogeneous of degree d and h ̸= 0, we must have deg(h) = d and h = f .

The benefit of Corollary 4.4 is that now instead of the s× s matrix M we are dealing with
the r × r matrix (A −

∑
i≥0 BDiC). This however comes with some costs. The first is that

now we can only say that f is the lowest degree homogeneous component of the determinant of
this smaller matrix. The second is that this smaller matrix involves power series. The second
problem is easily resolved via the following simple observation.

Observation 4.5. Let A,B,C,D as in (4.3) and let d ∈ N. For a polynomial f , let Homd(f)
denote its homogeneous component of degree d. Then

Homd(Det(A−B(I −D)−1C)) = Homd(Det(A−BC −BDC −BD2C − · · · −BDd−2C)).
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Proof. We have that (I −D)−1 = I +D +D2 + · · · =
∑∞

i=0 D
i, so

A−B(I −D)−1C = A−B

( ∞∑
i=0

Di

)
C.

However, since we’re interested in the degree-d component of the determinant of this matrix,
and A,B,C,D all have homogeneous linear functions as their entries, any power of D larger
than d− 2 can’t contribute anything to this component (as it will only contribute monomials of
degree larger than d), which implies we can truncate the power series at i = d− 2 to obtain the
observation.

We remark that one can slightly tighten the analysis in Observation 4.5. Since the matrix
A − BC − BDC − BD2C − · · · − BDd−2C is an r × r matrix containing only constant free
polynomials, when computing its degree-d homogeneous component we can even truncate the
power series at BDd−r+2C. This can save a factor of d in the final analysis when r is very close
to d.

The representation above already gets us very close to the final construction of the ABP.

Lemma 4.6. Let f be a homogeneous polynomial over F of degree d ≥ 1 and M an s × s
determinantal representation of f over F in normal form as in (4.3). Define the r × r matrix

W = A−BC −BDC −BD2C − · · · −BDd−2C. (4.7)

Then:

1. Every entry of W is a constant free polynomial of degree at most d.

2. The smallest degree homogeneous component of Det(W ) equals f .

3. r ≤ d.

4. Every entry of W is a polynomial computed by an ABP of size at most O(ds) and of width
O(s).

Proof. Items 1 and 2 follow from Corollary 4.4 and Observation 4.5.
To prove item 3, note that by assumption every entry of A,B,C,D is a homogeneous linear

polynomial. Thus, W ∈ Fr×r is a matrix of constant free polynomials, and the smallest degree
homogeneous component of Det(W ) is of degree at least r. Since it is of degree d (by item 2),
r ≤ d.

Item 4 also follows easily from the definition of W . The (i, j)-th entry of W is given by

eiWej = eiAej − eiBCej − eiBDCej − · · · − eiBDd−2Cej .

Each summand above is computed by an ABP of size O(ds) as per Definition 2.7. Summing up
those ABPs we get an ABP of size O(d2s).

We can slightly improve the upper bound to O(ds) as follows. We first compute (I +D +
. . . + Dd−2) in one shot using an ABP of size O(ds) and width O(s) as the top-right (block)
entry of the following matrix multiplications:([

I I
0 D

])d−1

=

[
I I +D + . . .+Dd−2

0 Dd−1

]
.

We then multiply by eiB on the left and Cej on the right, for a total of O(s) more vertices
(without increasing the width).

We can now complete the proof of Theorem 4.1.
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Proof of Theorem 4.1. Let f be a homogeneous polynomial over F of degree d ≥ 1 and M an
s × s determinantal representation of f over F in normal form as in (4.3). Let W be as in
Lemma 4.6.

We now construct the following ABP that computes f using the following steps. We start
by taking an ABP that computes the determinant of an r × r symbolic matrix. (where r is as
in Claim 4.2). This has size O(r3) = O(d3) by the construction of [MV97] (Theorem 2.9) and
Lemma 4.6.

We now replace each variable xi,j by the ABP of size O(ds) computing the (i, j)-th entry of
W given by Lemma 4.6. We get an ABP of total size O(d4s) that computes Det(W ).

Now, from Lemma 2.8, we get that there is a homogeneous ABP of size at most O(d5s) that
computes the degree d homogeneous component.

5 r-Regular Determinantal Complexity
The methods of Section 3 and Section 4 suggest that an important parameter in the study of
determinantal representations is the rank of the constant part of the matrix. In this section
we investigate it further and define classes of determinantal representations parametrized by
this rank. These generalize the definition of a regular determinantal representation and regular
determinantal complexity (Definition 2.4).
Definition 5.1. We define a determinantal representation M of f to be r-regular if the constant
part M0 of M (i.e., M(0)) is of rank s − r. We denote by rdcr(f) the minimal integer s such
that f has a r-regular determinantal representation of size s. ♢

We emphasize that under our definition r denotes co-rank of the constant part (rather than
the rank itself), as this parameter is slightly more elegant to work with. For r = 1, this definition
is identical to the previous definition of regular representation, i.e. rdc1(f) = rdc(f).

One may again relate the rank of the constant part of determinantal representations of f
to natural varieties associated with f , as in Lemma 2.5. Now, instead of looking at the variety
defined by first-order partial derivatives, we look at partial derivatives of order up to r.
Definition 5.2. Let f ∈ F[x] be a polynomial. We define Sr(f) is the variety defined by

Sr(f) =

{
a :

∂rf

∂xi1 · · · ∂xir′
(a) = 0, for every r′ ≤ r and for all i1, . . . , ir′ ∈ {1, . . . , n}

}
.

That is, Sr(f) is the set of common zeros of all partial derivatives of f of order at most r. ♢

Clearly, since partial derivatives of the determinant are either identically zero or determinants
of smaller submatrices, Sr(Detm) is the set of matrices of rank at most m−(r+1). The following
fact is a generalization of Fact 2.2.

Fact 5.3. Let F be an algebraically closed field and let Detm be the m×m determinant polyno-
mial. Then Sr(Detm) ⊆ Fm×m is precisely the set of matrices of rank at most m− (r+ 1), and
dimSr(Detm) = m2 − (r + 1)2.

The proof is a identical to the proof of [vzG87, Lemma 2.1] with the required changes in
parameters.

Proof Sketch. As in [vzG87], for 1 ≤ i1 ≤ . . . ≤ ir ≤ m, define

Si1,...,ir = {M ∈ Fm×m : rows i1, . . . , ir are linearly dependent on the other rows of M}.

We can therefore write Sm−r+1,...,m, for example, as the image of the following mapping.

ϕ : F(m−r)×m × Fm−r × · · · × Fm−r → Fm×m,
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(M ′, u1, . . . , ur) 7→


M ′

uT
1 M

′

...
uT
r M

′

 .

The rest of the proof follows through as in [vzG87, Lemma 2.1].

We can now conclude as before the following natural analog of Lemma 2.5.

Lemma 5.4. Let f ∈ F[x] be a polynomial, and let M : Fn → Fs×s be a polynomial map
such that f(x) = Dets(M(x)). Suppose further that dimSr(f) < n − (r + 1)2. Then Im(M) ∩
Sr(Dets) = ∅. Furthermore, all matrices in Im(M) have rank at least s− r.

Proof Sketch. We follow the proof of [vzG87, Theorem 3.1] (see also [KV22, Lemma 3.5]). Sup-
pose f(x) = Dets(M(x)) and suppose A ∈ Im(M)∩Sr(Dets) so that A = M(z) for some z ∈ Fn.
We claim that z ∈ Sr(f), which implies that M−1(Sr(Dets)) ⊆ Sr(f) so that

dim(M−1(Sr(Dets))) ≤ dim(Sr(f)) < n− (r + 1)2,

but on the other hand, since Im(M) and Sr(Dets) aren’t disjoint, by Fact 5.3 and by Theorem
17.24 of [Har95]

dim(M−1(Sr(Dets))) ≥ n+ (s2 − (r + 1)2)− s2 = n− (r + 1)2

which is a contradiction (and the “moreover” part of the lemma follows from Fact 5.3).
It remains to show that z ∈ Sr(f). Consider any partial derivative of f of order r′ ≤ r,

∂rf
∂xi1∂xi2 ···∂xi

r′
. Since f(x) = Det(M(x)), by repeated application of the chain rule and the

product rule, we get that ∂rf
∂xi1∂xi2 ···∂xi

r′
is a sum of terms, each of which has the form(

∂tDets
∂yj1,k1

· · · ∂yjt,kt

(M(x))

)
· g

where g is some product of derivatives of the coordinates of M , for some t ≤ r′ ≤ r and some
choices of indices j1, k1, . . . , jt, kt. Since M(z) = A ∈ Sr(Dets), this entire expression equals 0
(regardless of g).

And again, an easy consequence of this lemma is the following observation, analogous to
Observation 2.6.

Observation 5.5. Let f ∈ F[x] be a polynomial whose constant term is zero. Further assume
that dimSr(f) < n − (r + 1)2. Then any determinantal representation of f must be r′-regular
for some r′ ≤ r.

Proof. Let f has a determinantal representation M of size s. As dimSr(f) < n− (r+1)2, using
Lemma 5.4 we know that all matrices in Im(M) have rank at least s − r. In particular, M(0)
is of rank ≥ s − r. As f does not have a constant term, f(0) = Det(M(0)) = 0. Therefore,
s− 1 ≥ rank(M(0)) ≥ s− r and M is an r′-regular determinantal representation of f for some
r′ ≤ r.

Having defined r-regular determinantal representations, we remark that the construction
given in Theorem 4.1 of Section 4 implies the following theorem.

Theorem 5.6. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
rdcr(f) = s. Then habp(f) ≤ O(r3 · d2 · s).

We remark that Theorem 5.6 indeed generalizes Theorem 4.1, as degree-d polynomials have
only r-regular determinantal representations in which r ≤ d (see item 3 of Lemma 4.6).

Theorem 5.6 follows directly by inspecting the proof of Theorem 4.1 and keeping r as a
separate parameter instead of using the crude upper bound r ≤ d.
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6 Open problems
We conclude with some open problems.

1. Based on the results in this paper, a natural question to investigate further is the question
of proving super linear lower bounds for ABPs for a constant degree polynomial. For such
a lower bound to imply a lower bound on determinantal complexity lower bounds, we
require a lower bound on the number of vertices in the ABP. Perhaps an easier first step
would be to prove a super linear lower bound on the number of edges in an ABP for a
constant degree polynomial.

2. It would be very interesting to extend the tight connection between determinantal com-
plexity and ABP size/width observed here to polynomials of large degree. Note that from
Theorem 3.1, if we consider the complexity measure of ABP width, such a connection holds
(independent of degree) for homogeneous polynomials that have singular loci of dimension
at most n − 5. Extending this to arbitrary polynomials in a way that does not incur the
poly(d) multiplicative blow up in size observed in Theorem 4.1 would be very interesting.

3. The notion of determinantal complexity of a polynomial can be naturally generalized in
the following way: a polynomial f ∈ F[x] is said to have degree d determinantal complexity
(denoted by dcd(f)) at most s if there is a matrix M ∈ F[x]s×s such that Det(M) = f
and every entry of M is a polynomial of degree at most d. Understanding the behavior of
dcd(f) as d increases would be interesting. Besides being a natural quantity on its own, it
offers a potential approach towards improving the known determinantal complexity lower
bounds using the techniques in [KV22].
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