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What are rigid matrices?

• A matrix  is rigid if it is far from low rank matrices.


• Formally, a matrix A is -rigid if 
		 	 	 	 	 	  
		 	 	 	 	 	 	

A ∈ 𝔽N×N
2

(ρ, Δ)

min
B:rank(B)=ρ

dist(A, B) ≥ Δ

Distance

Rank

Easy

Difficult



Applications

Distance

Rank

[V]

• Circuit lower bound 
		  
	[Valiant 77]: For any , if A is -rigid, then  can’t be 

computed by circuits of size  and depth  
 
 
	  
 
 
[FGHK 16] Current best known (explicit) circuit lower bound:  
	 	 	 	 	 	 	 	 	 3.01 N

ϵ > 0 ( N
log log N

, N1+ϵ) x → Ax

O(N) O(log N)



• Communication complexity 
 
 
[Razborov 89] Let  be a function , then  for every 

, the communication matrix  is not -rigid where 
	 	 	 	 	 	 	 	 	  

	 	 	 	 	 	 	 	  
 
	 	 	 	 	 	 	 	 	

f : {0,1}n × {0,1}n → {0,1} PHcc

ϵ > 0 Mf (ρ, Δ)

ρ = 2poly( log n
ϵ ), Δ = ϵ ⋅ 4n

Mf(x, y) = f(x, y)

Applications

Distance

Rank

[V]

[R]



Applications

• Approximate probabilistic degree 
 
	  
If -approximate probabilistic degree of is at most  then  is not 
( )-rigid. 
 
 
 
 
[Razborov,Smolensky 89] Approximating Majority needs probabilistic degree at least 

.

𝔽2−

ϵ f : {0,1}2n → {0,1} ρ Mf
nO(ρ), ϵ4n

𝔽2−
n



Previous constructions

Rank Distance Time

Random Matrix 0.01 DTIME(         )

[Friedman, SSS 90’s] Any DTIME(        )

[Goldreich-Tal 15] DTIME(         )

2O(N2)

NO(1)

2O(N)≥ N Ω ( N3

ρ2 log N )

O(N)

(Random Toeplitz matrices ( ) )𝔽2

(Untouched minor argument)

N2

Ω ( N2

ρ
log ( N

ρ ))Cauchy Matrices

DFT Matrix

ρ Δ



Recent constructions

Rank Distance Time

[Alman-Chen 19] 0.01 NTIME(        )

[B., Harsha, Paradise, 
Tal 20] 0.01 NTIME(        )

NO(1)
2O((log N)1/4−ϵ) N2

( PCPs !! )

( PCPs !! )

N2 NO(1)2O( log N
log log N )

ρ Δ



• [AC19] TIME 


• [AC 19] 


• [BHPT 20, Viola 20] Approximate probabilistic -degree lower bound of  

for a function in 


• [BHPT 20] Simpler (PCPs Matrix rigidity)


• [BHPT 20] Tight w.r.t. the PCP parameters!

[2log nω(1)
]NP ⊈ PHcc

ENP ⊈  (restricted) AC0[p] ∘ LTF ∘ AC0[p] ∘ LTF

𝔽2 Ω ( n
log2 n )

ENP

→

New implications

Distance

Rank

[V]

[R]

[AC, BHPT]



Probabilistically Checkable Proofs
• Suppose we want to prove a mathematical statement  (Think of : a 

given instance of 3SAT is satisfiable)


• PCPs provide a way to verify the claim , by reading the proof at a few 
locations.


• The prover needs to write the proof in a specific format.

ϕ ϕ

ϕ

π

ϕ Full access

Oracle access

Randomness R

Verifier

Accept/Reject



Probabilistically Checkable Proofs
• Completeness: “Correct claims can always be proven” 

		 	 	 	 	  If  is true, then there exists  
		 	 	 	 	 	 	 


• Soundness: “Incorrect claims cannot be proven” 
		 	 	 	 	 If  is false, then for all  
 
		 	 	 	 	 	 	

ϕ π⋆

PrR[Vπ⋆(ϕ, R) = 1] ≥ c

ϕ π

PrR[Vπ(ϕ, R) = 1] ≤ s



Probabilistically Checkable Proofs
• Other important parameters


• Size of the proof


• Number of queries


• Gap between the completeness (c) and soundness (s)


• Verifier’s running time 


• Smoothness: all locations from  are equally likely to be queried

V(ϕ, R)

π



Probabilistically Checkable Proofs
• For any language in NTIME( ), there exist PCPs with the following 

parameters


• Size of the proof 		 	 	 	 	 	 	 	 	 [BGHSV 1]


• Number of queries	 	 	 	 	 	 	 	 	 	 	 	 


• Gap between the completeness and soundness	 ( ) for any 


• Verifier’s running time 		 	 	 	 	 	 [BGHSV 2]


• Smoothness: all locations from  are equally likely to be queried

T(n)

T ⋅ 𝚙𝚘𝚕𝚢(log T)

q = O(1)

1 vs. ϵ ϵ > 0

V(ϕ, R) 𝚙𝚘𝚕𝚢(log T)

π



PCPs to Rigid Matrix (Overview) [Alman-Chen 19]

• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the proof of “ ” written in a matrix form


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then we will put L  NTIME( ), a CONTRADICTION! 
 
 
 
 
 
 
 
 

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

∈ 2n/n



Overview
• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the proof of “ ” written in a matrix form


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then let  be the low rank decomposition


• (Guess ) Simulate verifier on 


• Completeness: Accepted with probability 


• Soundness : Accepted with probability < 0.0001


• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B

1 − qδ

< 2n/n

Since
|π | = 2n ⋅ 𝚙𝚘𝚕𝚢(n), |A | + |B | ≪ 2n/n

Smoothness and π⋆ ≈δ A ⋅ B



Overview
• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the proof of “ ” written in a matrix form


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then let  be the low rank decomposition


• (Guess ) Simulate verifier on 


• Completeness: Accepted with probability 


• Soundness : Accepted with probability < 0.0001


• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B

1 − qδ

< 2n/n

Must fail for infinitely many n



NTIME machine outputting rigid matrices

• On input , the machine does the following:


• Let L be the language from the previous slide


• Set       ( )


• Guess the “proof”  of the statement “ ” ( )


• Output the matrix 

1N

x = 1n N = 2n

π x ∈ L π ∈ 𝔽∼2n/2×∼2n/2

2

π

Claim: For infinitely many N, the machine outputs a rigid 
matrix.

can be done in 
 non-deterministic 

time
𝚙𝚘𝚕𝚢(N) Recall 

|π | ≈ 2n ⋅ 𝚙𝚘𝚕𝚢(n)



Overview
• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the proof of “ ” written in a matrix form


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then let  be the low rank decomposition


• (Guess ) Simulate verifier on   (needs to be done in  time)


• Completeness: Accepted with probability 


• Soundness : Accepted with probability < 0.0001


• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B < 2n/n

1 − qδ

< 2n/n

(Calculate the acceptance prob. in  time)< 2n/n



Overview
• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the proof of “ ” written in a matrix form


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then let  be the low rank decomposition


• (Guess ) Simulate verifier on   (needs to be done in  time)


• Completeness: Accepted with probability 


• Soundness : Accepted with probability < 0.0001


• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B < 2n/n

1 − qδ

< 2n/n

(Calculate the acceptance prob. in  time)< 2n/n

Simpler simulation using 
“rectangularity”

[AC 19] Boils 
down to fast counting #1s in 

a product of low rank 
matrices



Rest of the talk
• Introduce rectangular PCPs


• Convince that the simulation can be done in  non-deterministic 
time


• How the fast counting is used in this process

< 2n/n



PCPs

π

ϕ Full access

Oracle access

Randomness R

q1 q2 q3

1 2 3 4 5  ………………………………………..……………………………………….………………………………T

Verifier

Each query location depends on the full randomness R

Accept/Reject



Rectangular PCPs

π

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

1. Proof as a matrix


2. Row and column indices depend on the first and 
the second half of the randomness, respectively.



almost-rectangular PCPsτ−

π

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

1. Proof as a matrix 

2. Row index depends on ( ) and 
the column index depends on ( ). 

3.  

4.

Rrow, Rshared
Rcol, Rshared

|Rshared | = τ ⋅ |R |

|Rrow | = |Rcol | =
1 − τ

2
|R |

Rshared



Main Theorem
• [BHPT 20] Fix any . For every language NTIME( ), there exists a 

rectangular PCP with the following parameters:


• Completeness 1 and soundness 


• Query complexity 


• Proof size   (Randomness complexity = )


• Verifier’s run-time 


• Smooth and almost rectangular

ϵ, τ > 0 L ∈ 2n

ϵ

O(1)

2n ⋅ 𝚙𝚘𝚕𝚢(n) n + O(log n)

2ϵn

τ−



Almost-rectangular PCP Rigid Matrices→
• L be any unary language in NTIME( ) NTIME( ). Given 


• Let  be the (almost-rectangular) proof. 


•  cannot be approximated (hamming distance) by a low rank matrix


• If it were then let  be the low rank decomposition of 


• (Guess ) Simulate verifier on  

• Completeness: Accepted with probability 


• Soundness : Accepted with probability < 0.0001


• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π

π δ−

A, B π

A, B A . B

1 − qδ

< 2n/n



Simulate verifier on  A . B

A.B
A

B

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

Rshared

Simulation

For simplicity, assume that the verifier is querying 3 bits and 

accepting iff the parity of the three bits is 1.



Counting #1s in a prod. of low rank matrices

A1 A2 A3

B1
B2
B3

:=   -th row of   = -th row of AAk i Ak qrow
k (i, z)

:=   -th col of  = -th col of BBk j Bk qcol
k ( j, z)

Mz=

parity of the 3 bits queried by 

the verifier on randomness 
Mz(i, j) =

(i, Rshared, j)

Fix Rshared = z
Indexed by Rcol

Indexed by 
Rrow



Simulate verifier on  

• For every 


• Calculate the fraction of 1s in . Let the fraction be 


• Acceptance probability on the “proof”  is 
		 	 	 	 	 	  
		 	 	 	 	 	 	 	 	 	 	  

A . B

z ∈ {0,1}|Rshared|

Mz pz

A ⋅ B

Ez[pz]

Simulation

Set of Rshared
Setting up matrices   

and 
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Total running time of the simulation:  2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + calculate pz)



Fast counting
Total running time of the simulation: 2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + calculate pz)

Set of Rshared
Setting up matrices   

and 
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Calculate pz

• Given two matrices and , compute the number of 1s in 


• [Chan-Williams 16] Can be done in time roughly   ( provided 
 )

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)



• Given two matrices and , compute the number of 1s in 


• [Chan-Williams 16] Can be done in time roughly   ( provided 
 )

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)

Fast counting

Set of Rshared
Setting up matrices   

and 
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Calculate pz

crucial saving

Total running time of the simulation: 2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + 2(1−τ)n− n
log ρ )



• Given two matrices and , calculate the number of 1s in 


• [Chan-Williams 16] Can be done in time roughly   ( provided 
 )

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)

Total running time of the simulation: 
2n

2
n

log ρ
=

2n

n
 (if ρ ≈ 2

n
log n  )

Finishing the proof

crucial saving



Open questions
• Even faster algorithm for counting #1s in a product of low rank matrices


• Algorithm for higher ranks ( )


• Other complexity implications of this framework? e.g. Rectangular 
rigidity?

r = Nϵ


