
Construction of Rigid Matrices from PCPs

Amey Bhangale		 	

(UC Riverside, USA)	

Workshop on Matrix Rigidity
FSTTCS, Dec 2020

What are rigid matrices?

• A matrix is rigid if it is far from low rank matrices.

• Formally, a matrix A is -rigid if 
		 	 	 	 	 	  
		 	 	 	 	 	 	

A ∈ 𝔽N×N
2

(ρ, Δ)

min
B:rank(B)=ρ

dist(A, B) ≥ Δ

Distance

Rank

Easy

Difficult

Applications

Distance

Rank

[V]

• Circuit lower bound 
		  
	[Valiant 77]: For any , if A is -rigid, then can’t be

computed by circuits of size and depth  
 
 
	  
 
 
[FGHK 16] Current best known (explicit) circuit lower bound:  
	 	 	 	 	 	 	 	 	 3.01 N

ϵ > 0 (N
log log N

, N1+ϵ) x → Ax

O(N) O(log N)

• Communication complexity 
 
 
[Razborov 89] Let be a function , then for every

, the communication matrix is not -rigid where 
	 	 	 	 	 	 	 	 	  

	 	 	 	 	 	 	 	  
 
	 	 	 	 	 	 	 	 	

f : {0,1}n × {0,1}n → {0,1} PHcc

ϵ > 0 Mf (ρ, Δ)

ρ = 2poly(log n
ϵ), Δ = ϵ ⋅ 4n

Mf(x, y) = f(x, y)

Applications

Distance

Rank

[V]

[R]

Applications

• Approximate probabilistic degree 
 
	  
If -approximate probabilistic degree of is at most then is not
()-rigid. 
 
 
 
 
[Razborov,Smolensky 89] Approximating Majority needs probabilistic degree at least

.

𝔽2−

ϵ f : {0,1}2n → {0,1} ρ Mf
nO(ρ), ϵ4n

𝔽2−
n

Previous constructions

Rank Distance Time

Random Matrix 0.01 DTIME()

[Friedman, SSS 90’s] Any DTIME()

[Goldreich-Tal 15] DTIME()

2O(N2)

NO(1)

2O(N)≥ N Ω (N3

ρ2 log N)

O(N)

(Random Toeplitz matrices ())𝔽2

(Untouched minor argument)

N2

Ω (N2

ρ
log (N

ρ))Cauchy Matrices

DFT Matrix

ρ Δ

Recent constructions

Rank Distance Time

[Alman-Chen 19] 0.01 NTIME()

[B., Harsha, Paradise,
Tal 20] 0.01 NTIME()

NO(1)
2O((log N)1/4−ϵ) N2

(PCPs !!)

(PCPs !!)

N2 NO(1)2O(log N
log log N)

ρ Δ

• [AC19] TIME

• [AC 19]

• [BHPT 20, Viola 20] Approximate probabilistic -degree lower bound of

for a function in

• [BHPT 20] Simpler (PCPs Matrix rigidity)

• [BHPT 20] Tight w.r.t. the PCP parameters!

[2log nω(1)
]NP ⊈ PHcc

ENP ⊈ (restricted) AC0[p] ∘ LTF ∘ AC0[p] ∘ LTF

𝔽2 Ω (n
log2 n)

ENP

→

New implications

Distance

Rank

[V]

[R]

[AC, BHPT]

Probabilistically Checkable Proofs
• Suppose we want to prove a mathematical statement (Think of : a

given instance of 3SAT is satisfiable)

• PCPs provide a way to verify the claim , by reading the proof at a few
locations.

• The prover needs to write the proof in a specific format.

ϕ ϕ

ϕ

π

ϕ Full access

Oracle access

Randomness R

Verifier

Accept/Reject

Probabilistically Checkable Proofs
• Completeness: “Correct claims can always be proven” 

		 	 	 	 	 If is true, then there exists  
		 	 	 	 	 	 	

• Soundness: “Incorrect claims cannot be proven” 
		 	 	 	 	 If is false, then for all  
 
		 	 	 	 	 	 	

ϕ π⋆

PrR[Vπ⋆(ϕ, R) = 1] ≥ c

ϕ π

PrR[Vπ(ϕ, R) = 1] ≤ s

Probabilistically Checkable Proofs
• Other important parameters

• Size of the proof

• Number of queries

• Gap between the completeness (c) and soundness (s)

• Verifier’s running time

• Smoothness: all locations from are equally likely to be queried

V(ϕ, R)

π

Probabilistically Checkable Proofs
• For any language in NTIME(), there exist PCPs with the following

parameters

• Size of the proof 		 	 	 	 	 	 	 	 	 [BGHSV 1]

• Number of queries	 	 	 	 	 	 	 	 	 	 	 	

• Gap between the completeness and soundness	 () for any

• Verifier’s running time 		 	 	 	 	 	 [BGHSV 2]

• Smoothness: all locations from are equally likely to be queried

T(n)

T ⋅ 𝚙𝚘𝚕𝚢(log T)

q = O(1)

1 vs. ϵ ϵ > 0

V(ϕ, R) 𝚙𝚘𝚕𝚢(log T)

π

PCPs to Rigid Matrix (Overview) [Alman-Chen 19]

• L be any unary language in NTIME() NTIME(). Given

• Let be the proof of “ ” written in a matrix form

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then we will put L NTIME(), a CONTRADICTION! 
 
 
 
 
 
 
 
 

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

∈ 2n/n

Overview
• L be any unary language in NTIME() NTIME(). Given

• Let be the proof of “ ” written in a matrix form

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then let be the low rank decomposition

• (Guess) Simulate verifier on

• Completeness: Accepted with probability

• Soundness : Accepted with probability < 0.0001

• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B

1 − qδ

< 2n/n

Since
|π | = 2n ⋅ 𝚙𝚘𝚕𝚢(n), |A | + |B | ≪ 2n/n

Smoothness and π⋆ ≈δ A ⋅ B

Overview
• L be any unary language in NTIME() NTIME(). Given

• Let be the proof of “ ” written in a matrix form

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then let be the low rank decomposition

• (Guess) Simulate verifier on

• Completeness: Accepted with probability

• Soundness : Accepted with probability < 0.0001

• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B

1 − qδ

< 2n/n

Must fail for infinitely many n

NTIME machine outputting rigid matrices

• On input , the machine does the following:

• Let L be the language from the previous slide

• Set ()

• Guess the “proof” of the statement “ ” ()

• Output the matrix

1N

x = 1n N = 2n

π x ∈ L π ∈ 𝔽∼2n/2×∼2n/2

2

π

Claim: For infinitely many N, the machine outputs a rigid
matrix.

can be done in
 non-deterministic

time
𝚙𝚘𝚕𝚢(N) Recall

|π | ≈ 2n ⋅ 𝚙𝚘𝚕𝚢(n)

Overview
• L be any unary language in NTIME() NTIME(). Given

• Let be the proof of “ ” written in a matrix form

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then let be the low rank decomposition

• (Guess) Simulate verifier on (needs to be done in time)

• Completeness: Accepted with probability

• Soundness : Accepted with probability < 0.0001

• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B < 2n/n

1 − qδ

< 2n/n

(Calculate the acceptance prob. in time)< 2n/n

Overview
• L be any unary language in NTIME() NTIME(). Given

• Let be the proof of “ ” written in a matrix form

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then let be the low rank decomposition

• (Guess) Simulate verifier on (needs to be done in time)

• Completeness: Accepted with probability

• Soundness : Accepted with probability < 0.0001

• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π x ∈ L

π δ−

A, B

A, B A . B < 2n/n

1 − qδ

< 2n/n

(Calculate the acceptance prob. in time)< 2n/n

Simpler simulation using
“rectangularity”

[AC 19] Boils
down to fast counting #1s in

a product of low rank
matrices

Rest of the talk
• Introduce rectangular PCPs

• Convince that the simulation can be done in non-deterministic
time

• How the fast counting is used in this process

< 2n/n

PCPs

π

ϕ Full access

Oracle access

Randomness R

q1 q2 q3

1 2 3 4 5 ………………………………………..……………………………………….………………………………T

Verifier

Each query location depends on the full randomness R

Accept/Reject

Rectangular PCPs

π

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

1. Proof as a matrix

2. Row and column indices depend on the first and 
the second half of the randomness, respectively.

almost-rectangular PCPsτ−

π

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

1. Proof as a matrix 

2. Row index depends on () and 
the column index depends on (). 

3.  

4.

Rrow, Rshared
Rcol, Rshared

|Rshared | = τ ⋅ |R |

|Rrow | = |Rcol | =
1 − τ

2
|R |

Rshared

Main Theorem
• [BHPT 20] Fix any . For every language NTIME(), there exists a

rectangular PCP with the following parameters:

• Completeness 1 and soundness

• Query complexity

• Proof size (Randomness complexity =)

• Verifier’s run-time

• Smooth and almost rectangular

ϵ, τ > 0 L ∈ 2n

ϵ

O(1)

2n ⋅ 𝚙𝚘𝚕𝚢(n) n + O(log n)

2ϵn

τ−

Almost-rectangular PCP Rigid Matrices→
• L be any unary language in NTIME() NTIME(). Given

• Let be the (almost-rectangular) proof.

• cannot be approximated (hamming distance) by a low rank matrix

• If it were then let be the low rank decomposition of

• (Guess) Simulate verifier on

• Completeness: Accepted with probability

• Soundness : Accepted with probability < 0.0001

• If the overall verification is done in time , then CONTRADICTION!

2n ∖ 2n/n x = 1n

π

π δ−

A, B π

A, B A . B

1 − qδ

< 2n/n

Simulate verifier on A . B

A.B
A

B

ϕ Full access Rrow

Verifier

Rcol

q1

q2

q3

qrow
1

qrow
3

qrow
2

qcol
1 qcol

2 qcol
3

Rshared

Simulation

For simplicity, assume that the verifier is querying 3 bits and

accepting iff the parity of the three bits is 1.

Counting #1s in a prod. of low rank matrices

A1 A2 A3

B1
B2
B3

:= -th row of = -th row of AAk i Ak qrow
k (i, z)

:= -th col of = -th col of BBk j Bk qcol
k (j, z)

Mz=

parity of the 3 bits queried by

the verifier on randomness
Mz(i, j) =

(i, Rshared, j)

Fix Rshared = z
Indexed by Rcol

Indexed by
Rrow

Simulate verifier on

• For every

• Calculate the fraction of 1s in . Let the fraction be

• Acceptance probability on the “proof” is 
		 	 	 	 	 	  
		 	 	 	 	 	 	 	 	 	 	

A . B

z ∈ {0,1}|Rshared|

Mz pz

A ⋅ B

Ez[pz]

Simulation

Set of Rshared
Setting up matrices

and
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Total running time of the simulation: 2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + calculate pz)

Fast counting
Total running time of the simulation: 2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + calculate pz)

Set of Rshared
Setting up matrices

and
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Calculate pz

• Given two matrices and , compute the number of 1s in

• [Chan-Williams 16] Can be done in time roughly (provided
)

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)

• Given two matrices and , compute the number of 1s in

• [Chan-Williams 16] Can be done in time roughly (provided
)

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)

Fast counting

Set of Rshared
Setting up matrices

and
A1, A2, A3

B1, B2, B3

The maps and (Rrow, Rshared) → qrow
k

(Rcol, Rshared) → qcol
k

Calculate pz

crucial saving

Total running time of the simulation: 2τn ⋅ (2n/2−τ/2 ⋅ ρ ⋅ 6 ⋅ 2ϵn + 2(1−τ)n− n
log ρ)

• Given two matrices and , calculate the number of 1s in

• [Chan-Williams 16] Can be done in time roughly (provided
)

X ∈ 𝔽N×r
2 Y ∈ 𝔽r×N

2 X ⋅ Y

N2− 1
log r

r = No(1)

Total running time of the simulation:
2n

2
n

log ρ
=

2n

n
 (if ρ ≈ 2

n
log n)

Finishing the proof

crucial saving

Open questions
• Even faster algorithm for counting #1s in a product of low rank matrices

• Algorithm for higher ranks ()

• Other complexity implications of this framework? e.g. Rectangular
rigidity?

r = Nϵ

