Construction of Rigid Matrices from PCPs

Amey Bhangale (UC Riverside, USA)

Workshop on Matrix Rigidity FSTTCS, Dec 2020

What are rigid matrices?

- A matrix $A \in \mathbb{F}_2^{N \times N}$ is rigid if it is far from low rank matrices.
- Formally, a matrix A is (ρ, Δ) -rigid if

 $\min_{A \in B} dist(A, B) \ge \Delta$ $B:rank(B)=\rho$

Applications

Circuit lower bound

computed by circuits of size O(N) and depth $O(\log N)$

[FGHK 16] Current best known (explicit) circuit lower bound: 3.01 N

[Valiant 77]: For any $\epsilon > 0$, if A is $\left(\frac{N}{\log \log N}, N^{1+\epsilon}\right)$ -rigid, then $x \to Ax$ can't be

Rank

Distance

Applications

Communication complexity

[Razborov 89] Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ be a function PH^{cc} , then for every $\epsilon > 0$, the communication matrix M_f is **not** (ρ, Δ) -rigid where

$$\rho = 2^{poly\left(\frac{\log n}{\epsilon}\right)}, \Delta = \epsilon \cdot 4^n$$

 $M_f(x, y) = f(x, y)$

Distance

Applications

• Approximate probabilistic \mathbb{F}_2 -degree

If ϵ -approximate probabilistic degree of $f: \{0,1\}^{2n} \to \{0,1\}$ is at most ρ then M_f is **not** $(n^{O(\rho)}, \epsilon 4^n)$ -rigid.

/n.

[Razborov,Smolensky 89] Approximating Majority needs probabilistic \mathbb{F}_2 -degree at least

Previous constructions

		Rank p
	Random Matrix	O(N)
Cauchy Matrices DFT Matrix	[Friedman, SSS 90's]	Any
	[Goldreich-Tal 15]	$\geq \sqrt{N}$

Recent constructions

- [BHPT 20] Tight w.r.t. the PCP parameters!
- [BHPT 20] Simpler (PCPs \rightarrow Matrix rigidity)
- for a function in E^{NP}
- [AC 19] $E^{NP} \not\subseteq$ (restricted) $AC^0[p] \circ LTF \circ AC^0[p] \circ LTF$
- [AC19] TIME $[2^{\log n^{\omega(1)}}]^{NP} \not\subseteq PH^{cc}$

New implications

Distance

- Suppose we want to prove a mathematical statement ϕ (Think of ϕ : a given instance of 3SAT is satisfiable)
- PCPs provide a way to verify the claim ϕ , by reading the proof at a few locations.
- The prover needs to write the proof in a specific format.

 Completeness: "Correct claims can always be proven" If ϕ is true, then there exists π^{\star} $\Pr_{R}[V^{\pi^{\star}}(\phi, R) = 1] \geq c$

 Soundness: "Incorrect claims cannot be proven" If ϕ is false, then for all π

 $\Pr_{R}[V^{\pi}(\phi, R) = 1] \leq s$

- Other important parameters
 - Size of the proof
 - Number of queries
 - Gap between the completeness (c) and soundness (s)
 - Verifier's running time $V(\phi, R)$
 - Smoothness: all locations from π are equally likely to be queried

- For any language in NTIME(T(n)), there exist PCPs with the following parameters
 - Size of the proof
 - Number of queries

 - Verifier's running time $V(\phi, R)$

Smoothness: all locations from π are equally likely to be queried

 $T \cdot \operatorname{poly}(\log T)$ [BGHSV 1] q = O(1)

Gap between the completeness and soundness $(1 \text{ vs. } \epsilon)$ for any $\epsilon > 0$

[BGHSV 2] poly(log T)

PCPs to Rigid Matrix (Overview) [Alman-Chen 19]

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the proof of " $x \in L$ " written in a matrix form
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then we will put $L \in NTIME(2^n/n)$, a CONTRADICTION!

Overview

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the proof of " $x \in L$ " written in a matrix form
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then let A, B be the low rank decomposition
 - (Guess A, B) Simulate verifier on $A \cdot B$
 - Completeness: Accepted with probability $1 q\delta$
 - Soundness : Accepted with probability < 0.0001
 - If the overall verification is done in time $< 2^n/n$, then CONTRADICTION!

Overview

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the proof of " $x \in L$ " written in a matrix form
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then let A, B be the low rank decomposition
 - (Guess A, B) Simulate verifier on $A \cdot B$
 - Completeness: Accepted with probability $1 q\delta$
 - Soundness : Accepted with probability < 0.0001
 - If the overall verification is done in time $< 2^n/n$, then CONTRADICTION!

NTIME machine outputting rigid matrices

- On input 1^N , the machine does the following:
 - Let L be the language from the previous slide
 - Set $x = 1^n$ ($N = 2^n$)

 - Output the matrix π

can be done in poly(N) non-deterministic time

Recall $|\pi| \approx 2^n \cdot \operatorname{poly}(n)$

• Guess the "proof" π of the statement " $x \in L$ " ($\pi \in \mathbb{F}_2^{\sim 2^{n/2} \times \sim 2^{n/2}}$)

Claim: For infinitely many N, the machine outputs a rigid matrix.

Overview

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the proof of " $x \in L$ " written in a matrix form
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then let A, B be the low rank decomposition
 - (Guess A, B) Simulate verifier on $A \cdot B$ (needs to be done in $< 2^n/n$ time)
 - Completeness: Accepted with probability $1 q\delta$ (Calculate the acceptance prob. in $< 2^n/n$ time) Soundness : Accepted with probability < 0.0001
 - If the overall verification is done in time $< 2^n/n$, then CONTRADICTION!

Overview

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the proof of " $x \in L$ " written in a matrix form
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then let A, B be the low rank decomposition
 - (Guess A, B) Simulate verifier on $A \cdot B$ (needs to be done in $< 2^n/n$ time)
 - Completeness: Accepted with probability $1 q\delta$
 - Soundness : Accepted with probability < 0.0001
 - If the overall verification is done in time $< 2^n/n$, then CONTRADICTION!

Simpler simulation using "rectangularity"

(Calculate the acceptance prob. in $< 2^n/n$ time)

[AC 19] Boils down to fast counting #1s in a product of low rank matrices

Rest of the talk

- Introduce rectangular PCPs
- time
- How the fast counting is used in this process

• Convince that the simulation can be done in $< 2^n/n$ non-deterministic

PCPs

Each query location depends on the full randomness R

Rectangular PCPs

Verifier

τ -almost-rectangular PCPs

- 1. Proof as a matrix
- 2. Row index depends on (R_{row}, R_{shared}) and the column index depends on (R_{col}, R_{shared}) .

3.
$$|R_{shared}| = \tau \cdot |R|$$

4.
$$|R_{row}| = |R_{col}| = \frac{1-\tau}{2}|R|$$

 ϕ

Full access

Verifier

Main Theorem

- rectangular PCP with the following parameters:
 - Completeness 1 and soundness *C*
 - Query complexity O(1)
 - Proof size $2^n \cdot poly(n)$ (Randomness complexity = $n + O(\log n)$)
 - Verifier's run-time $2^{\epsilon n}$
 - Smooth and *τ*-almost rectangular

• [BHPT 20] Fix any $\epsilon, \tau > 0$. For every language $L \in \text{NTIME}(2^n)$, there exists a

Almost-rectangular PCP → Rigid Matrices

- L be any unary language in NTIME(2^n)\NTIME($2^n/n$). Given $x = 1^n$
- Let π be the (almost-rectangular) proof.
- π cannot be δ —approximated (hamming distance) by a low rank matrix
 - If it were then let A, B be the low rank decomposition of π
 - (Guess A, B) Simulate verifier on A. B
 - Completeness: Accepted with probability $1 q\delta$
 - Soundness : Accepted with probability < 0.0001
 - If the overall verification is done in time $< 2^n/n$, then CONTRADICTION!

Simulation

Simulate verifier on A. B

For simplicity, assume that the verifier is querying 3 bits and accepting iff the parity of the three bits is 1.

 $A_k := i$ -th row of $A_k = q_k^{row}(i, z)$ -th row of A $B_k := j$ -th col of $B_k = q_k^{col}(j, z)$ -th col of B

 $M^{z}(i, j) =$ parity of the 3 bits queried by the verifier on randomness (i, R_{shared}, j)

Simulate verifier on A.B.

- For every $z \in \{0,1\}^{|R_{shared}|}$
 - Calculate the fraction of 1s in M^{z} . Let the fraction be p_{z}
- Acceptance probability on the "proof" $A \cdot B$ is

Set of *R*_{shared}

Simulation

 $\mathbf{E}_{z}[p_{z}]$

Setting up matrices A_1, A_2, A_3 and B_1, B_2, B_3

The maps
$$(R_{row}, R_{shared}) \rightarrow q_k^{row}$$
 and $(R_{col}, R_{shared}) \rightarrow q_k^{col}$

Total running time of the simulation

Set of *R*_{shared}

Setting up matrices A_1, A_2, A_3 and B_1, B_2, B_3

Calculate p_7

- - $r = N^{o(1)}$)

Fast counting

on:
$$2^{\tau n} \cdot (2^{n/2 - \tau/2} \cdot \rho \cdot 6 \cdot 2^{\epsilon n} + \text{calculate } p_z)$$

The maps $(R_{row}, R_{shared}) \rightarrow q_k^{row}$ and $(R_{col}, R_{shared}) \rightarrow q_k^{col}$

• Given two matrices $X \in \mathbb{F}_2^{N \times r}$ and $Y \in \mathbb{F}_2^{r \times N}$, compute the number of 1s in $X \cdot Y$

• [Chan-Williams 16] Can be done in time roughly $N^{2-\frac{1}{\log r}}$ (provided

Total running time of the simulation

Set of *R*_{shared}

Calculate p_7

- - $r = N^{o(1)}$)

Fast counting

n:
$$2^{\tau n} \cdot \left(2^{n/2 - \tau/2} \cdot \rho \cdot 6 \cdot 2^{\epsilon n} + 2^{(1 - \tau)n - \frac{n}{\log \rho}} \right)$$

Setting up matrices A_1, A_2, A_3 and B_1, B_2, B_3

The maps
$$(R_{row}, R_{shared}) \rightarrow q_k^{row}$$
 and
 $(R_{col}, R_{shared}) \rightarrow q_k^{col}$

• Given two matrices $X \in \mathbb{F}_2^{N \times r}$ and $Y \in \mathbb{F}_2^{r \times N}$, compute the number of 1s in $X \cdot Y$

• [Chan-Williams 16] Can be done in time roughly $N^{2-\frac{1}{\log r}}$ (provided

crucial saving

Finishing the proof

Total running time of the sim

- - $r = N^{o(1)}$)

nulation:
$$\frac{2^n}{2^{\frac{n}{\log \rho}}} = \frac{2^n}{n} \text{ (if } \rho \approx 2^{\frac{n}{\log n}} \text{)}$$

• Given two matrices $X \in \mathbb{F}_2^{N \times r}$ and $Y \in \mathbb{F}_2^{r \times N}$, calculate the number of 1s in $X \cdot Y$

• [Chan-Williams 16] Can be done in time roughly $N^{2-\frac{1}{\log r}}$ (provided

crucial saving

Open questions

- Even faster algorithm for counting #1s in a product of low rank matrices
 - Algorithm for higher ranks ($r = N^{\epsilon}$)
- Other complexity implications of this framework? e.g. Rectangular rigidity?