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Matrix Rigidity

I Matrix Rigidity was introduced by Valiant(1977) in the
context of computing linear transformations and was studied
independently by Grigoriev(1976).

Rigidity of a matrix

Rigidity of a matrix A for rank r is the minimum number of entries
to be changed in A so that rank(A) is at most r .

I Rigidity of a matrix A ∈ Fn×n for rank r is denoted by RF
A(r).

For the n × n identity matrix In, RF
In

(r) ≤ (n − r).
I A matrix is rigid if it is far from any matrix of low rank.
I RA(r) is hamming distance between A and rank ≤ r matrices.

Rigidity intertwines combinatorial & algebraic property.

Rigidity has connections to communication complexity,
data structure lower bounds and coding theory.
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Interpreting Matrix Rigidity

Let A ∈ Fn×n. Suppose rigidity of matrix A for rank r is ≤ s.
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Let A ∈ Fn×n. Suppose rigidity of matrix A for rank r is ≤ s.

A =

n× n

aij 7→ bij

No. of ’s here = s

n× n

C =

bij − aij
0

(i,j) =

otherwise

if
cij =

sparsity(C) ≤ s
rank(A + C) ≤ r

I When RF
A(r) ≤ s, there is a matrix C ∈ Fn×n of sparsity ≤ s

such that rank(A + C ) ≤ r .

I If there is a matrix C ∈ Fn×n of sparsity ≤ s such that
rank(A + C ) ≤ r then RF

A(r) ≤ s.

Rigidity of a matrix A for rank r

RF
A(r) = min

C
{sparsity(C) | C ∈ Fn×n, rankF(A + C ) ≤ r}.
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Toy Example I: Identity Matrix

RF
A(r) = min

C
{sparsity(C) | C ∈ Fn×n, rankF(A + C ) ≤ r}

I If RA(r) ≤ s then A = S + L such that S has sparsity ≤ s and
L has rank ≤ r .

I If A = S + L with S has sparsity of S ≤ s and rank(L) ≤ r
then RA(r) ≤ s.

Example

Rigidity of n × n identity matrix is (n − r) for any r ≤ n.

For any r ≤ n, RIn(r) ≤ (n − r).

Suppose, RIn(r) < (n − r). Then, there exists C ∈ Fn×n of
sparsity < (n − r) such that rank(In + C ) ≤ r .

rank(In + C ) ≥ rank(In)− rank(C ) ≥ n − (n − r) > r(⇐⇒)
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Toy Example II: Building over Identity matrices

Theorem (Midrijānis (2005))

For any n divisible by 2r , RF
Mn

(r) = n2

4r .

n/2r

n× n

I2r I2r

I2r

I2r I2r

I2r

blocksn/2r

blocks

No. of blocks = n2

4r2
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For any n divisible by 2r , RF
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4r .

Proof.

I Clearly, by changing r entries in each block
consistently rank(Mn) ≤ r . Thus,

RMn(r) ≤ n2

4r .

I Suppose, rank(Mn) can be reduced to r by
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4r entries. Then, ∃ I2r
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Upper Bounds on Matrix Rigidity
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linear combination of the r rows of C .

B C

D E

r

r (n− r)

A =

α1row1(C) + α2row2(C) + · · ·+ αrrowr(C)

Now, every row of A is a linear combination of the first r rows.
By changing (n − r)2 entries in E , rank(A) is reduced to r .
Thus, RF

A(r) ≤ (n − r)2.
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Linear Circuits

I Linear circuits are a computational model involving additions
and scalar multiplications.
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I C computes a linear transformation represented by A ∈ Fn×n.

size(C): # of edges

depth(C): length of longest path from i/p to o/p.

I Any linear transformation Fn → Fn can be computed by a
linear circuit of size O(n2) and depth O(log n).
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I Linear circuits have n inputs, n outputs and fan-in 2 gates.

size(C): # of edges

depth(C): length of longest path from i/p to o/p.

I Best known size lower bound: 3n − o(n) (Chashkin 1994).
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Linear Circuits and Matrix Rigidity

I Can we prove super-linear lower bounds for linear
circuits of logarithmic depth?

I What is the linear circuit complexity of rigid matrices?
Can a matrix of high rigidity be computed by linear size
logarithmic depth linear circuits?

Theorem (Valiant(1977))

For any A ∈ Fn×n if RA(εn) > n1+δ for some ε, δ > 0 then any
linear circuit of depth O(log n) computing the transformation
A : x 7→ A · x must have size Ω(n log log n).

I Rigid matrices cannot be computed by linear circuits having
small depth as well as small size.
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Proof of Valiant’s Theorem

I Consider a linear circuit of size s, depth d , n inputs, n outputs
and fan-in 2.

Edge Removal Lemma (Erdös, Graham, and Szemerédi 1976)

Let G be a directed acyclic graph with s edges and every path
having length at most d . Then, by removing at most s/ log d
edges every path in the resulting graph has length at most d/2.

I Repeating the edge removal process ε times, length of every
path at most d/2ε and no. of edges removed is sε

log d .
`i

removed edges

b1

b2

b3

b1, . . . , bk: tails of removed edges
k ≤ sε

log d
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Let G be a directed acyclic graph with s edges and every path
having length at most d . Then, by removing at most s/ log d
edges every path in the resulting graph has length at most d/2.

I Repeating the edge removal process ε times, length of every
path at most d/2ε and no. of edges removed is sε

log d .
`i

removed edges

b1

b2

b3

b1, . . . , bk: tails of removed edges
k ≤ sε

log d

9 / 22



Proof(contd.)

I Each `i is a linear combination of the tails b1, . . . , bk and at
most 2d/2ε input variables.

`i

b1 b2 bk

`i =
∑k
j=1 αijbj + ci

αij ∈ F

ci ∈ Fn,

bj ∈ Fn

2d/2
ε
-sparse
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I Then, rank(B1B2) ≤ k ≤ sε
log d and sparsity(C ) ≤ n2d/2ε .

I Thus, rigidity of A for rank sε
log d is at most n2d/2ε .

I If A ∈ Fn×n is computed by a linear circuit of size n log log n
and depth log n then RA(εn) ≤ n1+δ.
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Valiant’s Question

I For any A ∈ Fn×n if RA(εn) > n1+δ for some ε, δ > 0 then
any linear circuit of depth O(log n) computing A must have
size Ω(n log log n).

Valiant’s Question

Find an explicit sequence of matrices Mn ∈ Fn×n such that
RF
Mn

(εn) ≥ Ω(n1+δ) for ε, δ > 0.

I Explicit: There exists a poly(n) time deterministic algorithm
on input 1n outputs the n × n matrix Mn.

This Workshop

Recent Progress towards answering Valiant’s Question (and
beyond).

11 / 22



Valiant’s Question

I For any A ∈ Fn×n if RA(εn) > n1+δ for some ε, δ > 0 then
any linear circuit of depth O(log n) computing A must have
size Ω(n log log n).

Valiant’s Question

Find an explicit sequence of matrices Mn ∈ Fn×n such that
RF
Mn

(εn) ≥ Ω(n1+δ) for ε, δ > 0.

I Explicit: There exists a poly(n) time deterministic algorithm
on input 1n outputs the n × n matrix Mn.

This Workshop

Recent Progress towards answering Valiant’s Question (and
beyond).

11 / 22



Valiant’s Question

I For any A ∈ Fn×n if RA(εn) > n1+δ for some ε, δ > 0 then
any linear circuit of depth O(log n) computing A must have
size Ω(n log log n).

Valiant’s Question

Find an explicit sequence of matrices Mn ∈ Fn×n such that
RF
Mn

(εn) ≥ Ω(n1+δ) for ε, δ > 0.

I Explicit: There exists a poly(n) time deterministic algorithm
on input 1n outputs the n × n matrix Mn.

This Workshop

Recent Progress towards answering Valiant’s Question (and
beyond).

11 / 22



Valiant’s Question

I For any A ∈ Fn×n if RA(εn) > n1+δ for some ε, δ > 0 then
any linear circuit of depth O(log n) computing A must have
size Ω(n log log n).

Valiant’s Question

Find an explicit sequence of matrices Mn ∈ Fn×n such that
RF
Mn

(εn) ≥ Ω(n1+δ) for ε, δ > 0.

I Explicit: There exists a poly(n) time deterministic algorithm
on input 1n outputs the n × n matrix Mn.

This Workshop

Recent Progress towards answering Valiant’s Question (and
beyond).

11 / 22



Existence of Rigid Matrices

Theorem (Valiant(1977))

Let Fq be a finite field. For any 0 ≤ r ≤ n − Ω(
√
n) there is a

matrix M ∈ Fn×n
q such that R

Fq

M (r) = Ω((n − r)2/ log n).
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I When r < n − c1
√
n and s < c2(n − r)2/ log n almost all

matrices have rigidity (n − r)2.
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Super-exponential time construction of Rigid Matrices

Super-exponential time construction

For every n × n matrices A with entries in Fq, test if
there exists any s-sparse matrix C such that
rankFq(A + C ) ≤ r .

Running time: qO(n2) · qs · nO(1).
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there exists any s-sparse matrix C such that
rankFq(A + C ) ≤ r .

Running time: qO(n2) · qs · nO(1).

Theorem (Valiant(1977))

Let F be an infinite field. For any 0 ≤ r ≤ n there is a matrix
M ∈ Fn×n such that RF

M(r) = (n − r)2.
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Untouched Minor Argument

I Consider an n × n matrix M all of whose r × r
submatrices have full rank.
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least one untouched submatrix contributing rank r .

I Cauchy matrix: C = {cij}ni ,j=1; cij = 1
xi+yj

for 2n distinct

elements x1, . . . , xn, y1, . . . , yn ∈ F.

Theorem (Shokrollahi, Spielman, Stemann(1997))

Let F be a field with at least 2n distinct elements and Mn be n× n
Cauchy matrix. Then, RF

Mn
(r) = Ω(n

2

r log n
r ) for log n ≤ r ≤ n/2.
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Proof of SSS‘97

Suppose not, RF
Mn

(r) = o(n
2

r log n
r ).

That is, by changing

o(n
2

r log n
r ) entries in M, rank can be reduced to r .

I Consider a bipartite graph G = (U,V ,E )
with |U| = |V | = n such that
(i , j) ∈ E (G ) iff Mij is untouched.

I G has at least n2 − o(n
2

r log n
r ) edges.

U V

1

i j

1

nn

Mij untouched

Theorem (Kovári-Sós-Turán (1954))

The maximum number of edges in any n × n bipartite graph
without Kr+1,r+1 is at most n2 − n(n−r)

2(r+1) log n
r .

I G contains a (r + 1)× (r + 1) complete bipartite subgraph.

I If fewer than n2

4(r+1) log n
r entries in M are changed an

(r + 1)× (r + 1) submatrix of Mn remains untouched.
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Matrices with Algebraically Independent Entries

I a1, . . . , an ∈ R are algebraically independent over Q if there is
no polynomial P ∈ Q[x1, . . . , xn] such that P(a1, . . . , an) = 0.

I {π, eπ} are algebraically independent over Q.

I Any set of n + 1 polynomials p1, . . . , pn+1 on n variables is
algebraically dependent.

Theorem

Let A ∈ Rn×n with n2 algebraically independent elements over Q
as its entries. Then, for any r ≤ n, RR

A (r) = (n − r)2.

Proof. Upper bound via Valiant’s theorem.
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Matrices with Algebraically Independent Entries

Lower Bound: Suppose not, RR
A (r) < (n − r)2. Then A = S + L

such that S has sparsity s < (n − r)2 and L has rank ≤ r .

Every entry of A is a function of the n2 − (n − r)2 many
entries of L and s entries of S .

These are n2 polynomials each on n2 − (n − r)2 + s variables.

The entries of A are algebraically dependent. (⇒⇐)

The matrix A is not explicit. The degree of the
extension [Q(a11, . . . , ann) : Q] = 2n

2
.

Can we reduce the amount of algebraic independence
among the entries while maintaining rigidity?
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Non-explicit Rigid Matrices

Theorem (Lokam(2000, 2006))

I Let x1, . . . , xn ∈ C be algebraically independent over Q and
V = (x ji )1≤i ,j≤n be Vandermonde matrix in Cn×n. Then,
RC
V (r) = Ω(n2) for r ≤ O(

√
n).

I Let A ∈ Cn×n with aij =
√
pij for distinct primes p11, . . . , pnn.

Then, RC
A (r) = Ω(n2) for r ≤ n/32.

Square root of distinct primes are linearly independent over Q.

Proof via algebraic dimension argument(Shoup, Smolensky).
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Rigidity of Random Matrices

I Random matrices are rigid with high probability.
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I Random matrices are rigid with high probability.

[Goldreich, Tal 2013] Rigidity of Random Toeplitz matrix

For every r ∈ [
√
n, n/32], RF2

T (r) = Ω
(

n3

r2 log n

)
with probability

1− o(1) where T ∈ Fn×n
2 is a random Toeplitz/Hankel matrix.

Toeplitz T =

 a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

 and Hankel H =

a−2 a−1 a0

a−1 a0 a1

a0 a1 a2


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a−1 a0 a1

a−2 a−1 a0

 and Hankel H =

a−2 a−1 a0

a−1 a0 a1

a0 a1 a2


Asymptotically better than Ω(n

2

r log n
r ) if r = o( n

log n log log n ).
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Asymptotically better than Ω(n

2

r log n
r ) if r = o( n

log n log log n ).

Explicit construction in ENP

Run over all n × n Hankel/Toeplitz matrices with
{0, 1} entries.

For each such matrix test if RF2
T (r) = Ω

(
n3

r2 log n

)
.
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Designing TESTs,r(H)

TESTs,r (H)

(1) If H is not rigid then reject H.

(2) If H is random Hankel matrix, accept H w.p 1− o(1).
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Designing TESTs,r(H)

TESTs,r (H)

(1) If H is not rigid then reject H.

(2) If H is random Hankel matrix, accept H w.p 1− o(1).

TESTs,r (H)

Partition H into submatrices of dimension 2r × 2r each.
For every such submatrix H ′ of H

For every s
(n/2r)2 -sparse matrix S ′ in F2r×2r

2

If rank(H ′ − S ′) ≤ r then reject H
Accept H
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Explicit Rigid matrices beyond exponential time

(Folklore) Sub-exponential time construction of
M ∈ Fn×n

2 with RF2
M (n1/2−ε) ≥ Ω(n2/ log n).

(Alman, Chen ‘20) M ∈ Fn×n
2 in PNP such that there

exists a δ > 0 with RM(2(log n)1/4−ε
) ≥ δn2 for all ε > 0.

(Bhangale, Harsha, Paradise, Tal ‘20) M ∈ Fn×n
2 in

PNP such that there exists a δ > 0 with
RM(2log n/Ω(log log n)) ≥ δn2.

Works for any finite field for large n.

Proof via linear circuit lower bounds & PCPs.
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The Road Thus Taken

Thank You! Questions?
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