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independently by Grigoriev(1976).
Rigidity of a matrix

Rigidity of a matrix A for rank r is the minimum number of entries
to be changed in A so that rank(A) is at most r.

> Rigidity of a matrix A € F™" for rank r is denoted by R5(r).
For the n x n identity matrix /,, RE(r) <(n—r).

> A matrix is rigid if it is far from any matrix of low rank.

» Ra(r) is hamming distance between A and rank < r matrices.

o Rigidity intertwines combinatorial & algebraic property.

o Rigidity has connections to communication complexity,
data structure lower bounds and coding theory.
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Interpreting Matrix Rigidity

Let A € F"*". Suppose rigidity of matrix A for rank r is <'s.
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X X
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No. of x’s here = s . By — i 55 () =
“ 0 otherwise

> When R3(r) < s, there is a matrix C € F"™" of sparsity < s
such that rank(A+ C) < r.
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Interpreting Matrix Rigidity

Let A € F™" Suppose rigidity of matrix A for rank r is < s.

A= x C=
x aij > bi

nxn

sparsity(C) < s
rank(A+C) <r

nxn

No. of x’s here = s {
_J bij —ai
Cij =
0

if (ij) = x

otherwise

» When RE(r) <'s, there is a matrix C € F™" of sparsity < s

such that rank(A+ C) < r.

» If there is a matrix C € F"*" of sparsity < s such that

rank(A + C) < r then Ri(r) <ss.

3/22



Interpreting Matrix Rigidity

Let A € F"™*". Suppose rigidity of matrix A for rank r is < s.

A " sparsity(C) < s
B " aij > bij €= rank(A+C) <r

nxn nxn

No. of x’s here = s °3 /A8
i _{bu —ay i ()=

0 otherwise

» When R3(r) < s, there is a matrix C € F"™" of sparsity < s
such that rank(A+ C) < r.

» If there is a matrix C € F™*" of sparsity < s such that
rank(A + C) < r then R4(r) <s.

Rigidity of a matrix A for rank r
RA(r) = m('jn{sparsity(C) | C € F™" rankg(A+ C) < r}.
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Toy Example I: Identity Matrix
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then Ra(r) <s.

Example
Rigidity of n x n identity matrix is (n — r) for any r < n.
@ Forany r <n, R, (r) <(n—r).

@ Suppose, Ry, (r) < (n—r). Then, there exists C € F"*" of
sparsity < (n — r) such that rank(/, + C) <'r.
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Toy Example I: Identity Matrix

RA(r) = mCin{sparsity(C) | C e F™" rankp(A+ C) < r}

» If Ra(r) < sthen A= S+ L such that S has sparsity < s and
L has rank < r.

» If A= S+ L with S has sparsity of S <'s and rank(L) < r
then Ra(r) <s.
Example
Rigidity of n x n identity matrix is (n — r) for any r < n.
e Forany r <n, R, (r) <(n—r).
@ Suppose, Ry, (r) < (n—r). Then, there exists C € F"*" of
sparsity < (n — r) such that rank(/, + C) <'r.
rank(/, + C) > rank(l,) — rank(C) > n—(n—r) > r(<==)
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Toy Example Il: Building over ldentity matrices

Theorem (Midrijanis (2005)) — —

IR L
P T o n2
For any n divisible by 2r, RMn(r) =1
Lyl = = « o Iy
o n/2r
° a2 s 8 o a blocks
Lyl = = « o I,

T mxn
<« n/2r blocks ——

No. of blocks = 12
yrea
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Theorem (Midrijanis (2005)) — —

5 o o T 2 Lyl = = = = = I,
For any n divisible by 2r, Ry, (r) = ;.
Lyl = o « = = I,
Proof. . B
» By changing r entries in each block o L [Pl
consistently, rank(M,) is at most r. Thus, . .
2 r| ° ° = ® ®° 2r
Rm,(r) < 77 L —

nxn
<« n/2r blocks ——

No. of blocks = 12
yrea
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Toy Example Il: Building over ldentity matrices

Theorem (Midrijanis (2005)) — —
For any n divisible by 2r, Ry, (r) = 4.

Proof. . T .

blocks

» Clearly, by changing r entries in each block
consistently rank(M,) < r. Thus,
Rm,(r) < T

— 4r- L |
nxn

» Suppose, rank(M,) can be reduced to r by «— n/2r blocks ——
. 2 , _ ,
changing fewer than % entries. Then, 3 b, No. of blocks = 1

block whose rank can be reduced to r by
changing fewer than r entries. (==)
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Theorem (Valiant(1977))
For any matrix A € F™" and any r < n, R§(r) < (n—r)2.
Proof.
» If rank(A) < r then Ra(r) = 0.

» If rank(A) > r there exists an full rank
r X r submatrix B in A.
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Upper Bounds on Matrix Rigidity

Theorem (Valiant(1977))
For any matrix A € F™" and any r < n, R5(r) < (n—r)2.

Proof.
» If rank(A) < r then Ra(r) = 0.

. T (n—r)
» If rank(A) > r there exists an full rank
r X r submatrix B in A. 1 " B C
» Every row of D can be expressed asa =~
linear combination of the r rows of B. D B

» Edit every row of E by corresponding
linear combination of the r rows of C.  @irowi(C) + azrowz(C) + - - + arrow,(C)

Now, every row of A is a linear combination of the first r rows.
By changing (n — r)? entries in E, rank(A) is reduced to r.
Thus, RE(r) < (n—r)2
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Linear Circuits

» Linear circuits are a computational model involving additions
and scalar multiplications.
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8z + 32 Tx1 + 522

» A linear circuit C over F is a DAG where
o in-degree 0 gates: labelled by variables;
o internal gates: labelled by +;
o edges: labelled by constants in F. T A-x T = Fl}

g 3 L2
i
75

» Linear circuits have n inputs, n outputs and fan-in 2 gates.
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Linear Circuits

» Linear circuits are a computational model involving additions

and scalar multiplications.
» A linear circuit C over F is a DAG where
o in-degree 0 gates: labelled by variables;
e internal gates: labelled by +;
e edges: labelled by constants in F.

n 1 n
-— €1 —
-— €2 —
é’ —
Tn 1 Tp " —

» Linear circuits have n inputs, n outputs and fan-in 2 gates.

» C computes a linear transformation represented by A € F"*".
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Linear Circuits

» A linear circuit C over [F is a DAG where
o in-degree 0 gates: labelled by variables;
e internal gates: labelled by +;
o edges: labelled by constants in F.
R A

Ty T2 €3 Tp-1 Tn

» Linear circuits have n inputs, n outputs and fan-in 2 gates.
» C computes a linear transformation represented by A € F"*",

o size(C): # of edges
@ depth(C): length of longest path from i/p to o/p.

» Any linear transformation F” — F" can be computed by a

linear circuit of size O(n?) and depth O(log n).
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Linear Circuits

» A linear circuit C over F is a DAG where
o in-degree 0 gates: labelled by variables;
e internal gates: labelled by +;
e edges: labelled by constants in F.

fl 62 é? fnfl én

T T2 T3 Tp—1 Tn

» Linear circuits have n inputs, n outputs and fan-in 2 gates.

o size(C): # of edges
o depth(C): length of longest path from i/p to o/p.

» Best known size lower bound: 3n — o(n) (Chashkin 1994).
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Linear Circuits and Matrix Rigidity

» Can we prove super-linear lower bounds for linear
circuits of logarithmic depth?

» What is the linear circuit complexity of rigid matrices?
Can a matrix of high rigidity be computed by linear size
logarithmic depth linear circuits?
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Linear Circuits and Matrix Rigidity

» Can we prove super-linear lower bounds for linear
circuits of logarithmic depth?

» What is the linear circuit complexity of rigid matrices?
Can a matrix of high rigidity be computed by linear size
logarithmic depth linear circuits?

Theorem (Valiant(1977))

For any A € F™*" if Ra(en) > n'*? for some €,8 > 0 then any
linear circuit of depth O(log n) computing the transformation
A:x— A-x must have size Q(nlog log n).

» Rigid matrices cannot be computed by linear circuits having
small depth as well as small size.
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Proof of Valiant's Theorem

» Consider a linear circuit of size s, depth d, n inputs, n outputs
and fan-in 2.
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Let G be a directed acyclic graph with s edges and every path
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Proof of Valiant's Theorem

» Consider a linear circuit of size s, depth d, n inputs, n outputs
and fan-in 2.

Edge Removal Lemma (Erdds, Graham, and Szemerédi 1976)

Let G be a directed acyclic graph with s edges and every path
having length at most d. Then, by removing at most s/ log d
edges every path in the resulting graph has length at most d/2.

» Repeating the edge removal process e times, Iength of every
path at most d/2¢ and no. of edges removed is

Iog d-

,,,,,, » removed edges
., by tails of removed edges
k< mg
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Proof(contd.)

» Each /; is a linear combination of the tails by, ..., by and at
most 29/2° input variables.

l; = Z§:1 O‘Zjb] + ¢;

OzijEFbjEFn

ci € F", 2d/ 2 _sparse
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Proof(contd.)

» Each /; is a linear combination of the tails by, ..., by and at
most 29/2° input variables.

li =<5y b+ ¢

47[1'4» :i «bi» + 47(;14

Qjj

» A= BB, + C where B; € F"™*k By € Fk*n C € <",
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Proof(contd.)

» Each /; is a linear combination of the tails by, ..., by and at
most 29/2° input variables.

0; =<k

j=1 Ozl'jbj + ¢

Qi

» A= BB, + C where By € F"™*k By, ¢ Fk*n C ¢ <",

» Then, rank(B1B2) < k < Iosged and sparsity(C) < n24/2°

«f[» =1 47[)[4» + - C; —»>
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» Each /; is a linear combination of the tails by, ..., by and at
most 29/2° input variables.
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Qjj

» A= BB, + C where By € F"™*k By, ¢ Fk*n C ¢ <",

» Then, rank(B1B2) < k < Iosged and sparsity(C) < n24/2°

» Thus, rigidity of A for rank Iosggd is at most n29/2".
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Proof(contd.)

» Each ¢; is a linear combination of the tails by, ..., b and at
most 29/2° input variables.

k
gi =¥/ Oézjb] + ¢;

47&4» =1 «b74> + -— C; —>

» A= BB+ C where B; € F"*k B, ¢ Fk*n C ¢ Fr<n,

> Then, rank(B1B2) < k < 55 and sparsity(C) < n24/2°

» Thus, rigidity of A for rank Io‘:d is at most n29/2".

> If Ae F™" is computed by a linear circuit of size nloglog n
and depth log n then Ra(en) < nlo.
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Valiant's Question

> For any A € T if Ra(en) > n'*9 for some ¢,d > 0 then
any linear circuit of depth O(log n) computing A must have
size Q(nloglog n).
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Valiant's Question

> For any A € T if Ra(en) > n'*9 for some ¢,d > 0 then
any linear circuit of depth O(log n) computing A must have
size Q(nloglog n).

Valiant's Question

Find an explicit sequence of matrices M, € F"*" such that
Ry (en) > Q(n'*) for ¢,6 > 0.

» Explicit: There exists a poly(n) time deterministic algorithm
on input 1”7 outputs the n x n matrix M,,.

This Workshop

Recent Progress towards answering Valiant's Question (and
beyond).
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Existence of Rigid Matrices

Theorem (Valiant(1977))

Let Fy be a finite field. For any 0 < r < n—Q(\/n) there is a
. F
matrix M € Fg*" such that Ry} (r) = Q((n — r)?/logn).
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Let Fy be a finite field. For any 0 < r < n— Q(+/n) there is a
. nxn F
matrix M € Fg*" such that Ry} (r) = Q((n — r)?/logn).

Proof. (via counting)
» Count no. of matrices A € Fg*" with Ra(r) <'s.
» If Ra(r) < sthen A= S+ L, sparsity(S) < s and rank(L) < r.
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No.of Ra(r) < s matrices: (ns> - q° : (n) g (),
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Existence of Rigid Matrices

Theorem (Valiant(1977))

Let Fy be a finite field. For any 0 < r < n— Q(+/n) there is a
. F
matrix M € Fg*" such that Ry} (r) = Q((n — r)?/logn).

Proof. (via counting)
» Count no. of matrices A € Fg" with Ra(r) <'s.
» If Ra(r) < sthen A= S+ L, sparsity(S) < s and rank(L) < r.
2 2
No.of Ra(r) < s matrices: <ns> e . (n) Lgm (),

r

no. of s-sparse matrices no. of rank-r matrices

» When r < n— c1y/n and s < ca(n — r)?/log n almost all
matrices have rigidity (n — r)2.
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Super-exponential time construction of Rigid Matrices

Super-exponential time construction

@ For every n x n matrices A with entries in Fg, test if
there exists any s-sparse matrix C such that
rankg, (A+ C) <r.

o(n?) o(1)

@ Running time: g -g°-n
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Super-exponential time construction of Rigid Matrices

Super-exponential time construction

@ For every n X n matrices A with entries in g, test if
there exists any s-sparse matrix C such that
rankg,(A+ C) <r.

@ Running time: qo("Z) -q° - n9),

Theorem (Valiant(1977))

Let F be an infinite field. For any 0 < r < n there is a matrix
M € F™" such that Ry,(r) = (n—r)>.

13/22



Untouched Minor Argument

» Consider an n x n matrix M all of whose r x r
submatrices have full rank.
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» Consider an n x n matrix M all of whose r x r
submatrices have full rank.

» Suppose few entries of M are changed, there is at
least one untouched submatrix contributing rank r.

> Cauchy matrix: C = {c¢;}7;_icj = ﬁ for 2n distinct
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Untouched Minor Argument

» Consider an n x n matrix M all of whose r x r
submatrices have full rank.

» Suppose few entries of M are changed, there is at
least one untouched submatrix contributing rank r.

> Cauchy matrix: C = {¢;}7;_;icj = ﬁ for 2n distinct
iTYj

elements x1,..., X0, y1,...,¥n € F.

Theorem (Shokrollahi, Spielman, Stemann(1997))

Let F be a field with at least 2n distigct elements and M,, be n X n
Cauchy matrix. Then, R}I\Tﬂn(r) =Q(Zlog2) forlogn<r<n/2.
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Proof of SSS'97

Suppose not, R}l\‘;,n(r) = o("—r2 log 7). That is, by changing

o(”—r2 log 7) entries in M, rank can be reduced to r.
» Consider a bipartite graph G = (U, V, E)

with |[U| = |V| = n such that
(i,j) € E(G) iff Mj; is untouched.

» G has at least n® — o(”—r2 log 7) edges.

Theorem (Kovari-Sés-Turdn (1954))

The maximum number of edges in any n X n bipartite graph

without Ky41 41 is at most n? — 'Z’E::B log 7.

» G contains a (r+ 1) x (r + 1) complete bipartite subgraph.
> If fewer than 4(;’7;) log 7 entries in M are changed an

(r +1) x (r 4+ 1) submatrix of M, remains untouched.
15/22
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Matrices with Algebraically Independent Entries

> a1,...,a, € R are algebraically independent over Q if there is
no polynomial P € Q[xi, ..., x| such that P(a1,...,a,) =0.

» {7, e"} are algebraically independent over Q.
> Any set of n+ 1 polynomials py,..., ppt1 On n variables is
algebraically dependent.
Theorem
Let A € R™" with n® algebraically independent elements over Q

as its entries. Then, for any r < n, RE(r) = (n—r)2.

Proof. Upper bound via Valiant's theorem.
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Matrices with Algebraically Independent Entries

Lower Bound: Suppose not, RE(r) < (n—r)2 Then A=S+L
such that S has sparsity s < (n— r)? and L has rank < r.

e Every entry of A is a function of the n?> — (n — r)? many

entries of L and s entries of S.
@ These are n? polynomials each on n?> — (n — r)2 + s variables.

@ The entries of A are algebraically dependent. (=<«)

@ The matrix A is not explicit. The degree of the
extension [Q(a11, . .., an) 1 Q] = 2.

@ Can we reduce the amount of algebraic independence
among the entries while maintaining rigidity?
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Non-explicit Rigid Matrices

Theorem (Lokam(2000, 2006))

» Let x1,...,x, € C be algebraically independent over Q and
V = (x!)1<ij<n be Vandermonde matrix in C"*". Then,
RS(r) = Q(n?) for r < O(v/n).
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Non-explicit Rigid Matrices

Theorem (Lokam(2000, 2006))

» Let x1,...,x, € C be algebraically independent over Q and
V = (x!)1<ij<n be Vandermonde matrix in C"*". Then,
RS(r) = Q(n?) for r < O(v/n).

» Let Ac C™" with ajj = /pjj for distinct primes p11,. .., Pan.
Then, R$(r) = Q(n?) for r < n/32.

@ Square root of distinct primes are linearly independent over Q.

@ Proof via algebraic dimension argument(Shoup, Smolensky).
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Rigidity of Random Matrices

» Random matrices are rigid with high probability.
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Rigidity of Random Matrices

» Random matrices are rigid with high probability.
[Goldreich, Tal 2013] Rigidity of Random Toeplitz matrix

For every r € [\/n, n/32], RI;‘?(r) =Q <$§gn) with probability
1 — o(1) where T € F7*" is a random Toeplitz/Hankel matrix.

a0 dai an d_p2 4d—1 4o
Toeplitz T = |a_1 ay ai| and Hankel H= |a_1 ay a1
d_p2 4d—-1 4o a0 dai an

: 2 :
o Asymptotically better than Q(7-log ) if r = o(ioz70gTegn)-

Explicit construction in ENP

@ Run over all n x n Hankel/Toeplitz matrices with
{0,1} entries.

o For each such matrix test if RH;?(r) =Q (#jgn)
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Designing TEST; ,(H)

(1) If H is not rigid then reject H.
(2) If H is random Hankel matrix, accept H w.p 1 — o(1).
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H S

_|_

L

sparsity(S) <

S

rank(L) <r
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2r

(n/2r)? submatrices
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Son
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Designing TEST; ,(H)

(1) If H is not rigid then reject H.
(2) If H is random Hankel matrix, accept H w.p 1 — o(1).

zr A
Ord =
OO H S

+

L

(n/2r)? submatrices sparsity(S") <

s

(n/2r)2

rank(L') <r
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Designing TEST; ,(H)

(1) If H is not rigid then reject H.
(2) If H is random Hankel matrix, accept H w.p 1 — o(1).

TEST, .(H)

Partition H into submatrices of dimension 2r x 2r each.
For every such submatrix H' of H
For every G / (n7ary-Sparse matrix S’ in F2r><2r

If rank(H' — S’) < r then reject H
Accept H
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Designing TEST; ,(H)

TEST, (H)

(1) If H is not rigid then reject H.

(2) If H is random Hankel matrix, accept H w.p 1 — o(1).

.

TEST, (H)

Partition H into submatrices of dimension 2r x 2r each.
For every such submatrix H' of H
For every (n/2r)2 -sparse matrix S’ in
If rank(H' — S’) < r then reject H
Accept H

2rx2r
IE‘2

Pr[TEST rejects H] = Pr[3H'3S’ rank(H'-S") < r]
Need to bound Pr[rank(H'-S") < r].
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Designing TEST; ,(H)

TEST, (H)

For every such submatrix H of H
For every @ / (njary-Sparse matrix S’ i
If rank(H' — S’) < r then reject H
Accept H

2rX2r
in 5

Partition H into submatrices of dimension 2r x 2r each.

Pr[TEST rejects H] = Pr[3H'3S’ rank(H'-S') < r]
Need to bound Pr[rank(H'-S") < r].

T 27>
r DE’ n/Zr:I
[:::] [:::] [:::] n/2r -
L5 . H

(n/2r)? submatrices
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Explicit Rigid matrices beyond exponential time

o (Folklore) Sub-exponential time construction of
M € F3*" with Ry?(nt/2=€) > Q(n?/ log n).

o (Alman, Chen '20) M € F5*" in PNP such that there
exists a 0 > 0 with Ry(20°8M"*™) > 5n2 for all € > 0.

@ (Bhangale, Harsha, Paradise, Tal '20) M € F2*" in
PNP such that there exists a 6 > 0 with
RM(2|ogn/Q(loglogn)) > Sn2.

@ Works for any finite field for large n.

@ Proof via linear circuit lower bounds & PCPs.
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The Road Thus Taken

1977

1977

1997

2000,2006

2013

2020

2020

1+ 8

Ra(en) =n GOAL
3IM Ra(r) = (n-r)*/log n Existence
AinP,Ra(r)=Q (ﬁ 10g7—l) Untouched Minor argument
r r
Non-explicit Ra(r) = Q(n?) Shoup-Smolensky Dimension
Ain BV, Ra(r) = Q (L) Rigidity of Random Toeplitz matrices
! r2logn.

2
Ain 2°M-time, Ry(n%%~€) = Q (1;;“) Talk by Ben Lee Volk

Ain PP, R, (2109n/loglogm)) > 5p2 ‘ Talk by Amey Bhangale

Thank You! Questions?
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