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Outline

Linear data structures
Rectangular rigidity

Linear data structure lower bounds imply rigidity lower
bounds — a result of [DGW 18]

Systematic linear data structures
« Equivalence to rectangular rigidity

Rigidity lower bound for Vector-Matrix-Vector problem
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For example, the input data can be a graph and
the query corresponds to finding shortest paths
between pairs of vertices.

Query time: number of acCesses on ay query

Store: (a,x),...,{(a,,, x)



Linear Data Structures

[Yao81, Fre81]
Store x € [F; and compute queries (g, x%Vhere gqeEQCF,

In tdata] ]
[ Query pu Query set

<CL1,ZE> I<a2?}7 $>

General data structures: Arbitrary query
\ function, data and function to compute bits of
storage.

For example, the input data can be a graph and
the query corresponds to finding shortest paths

Store: (a;,x between pairs of vertices.

Ficid can be arbitrary ana the space is not necessarily 2n.



Two Simple Data Structures

Store x € [F;, and compute queries (g, x%Vhere gqe QCF

[ Query Input data ] Query set ]
(a1, ) (a2, T)
\\\Qul <q,a:>//

Store: (q,,x), ..., {q,pp X) Store: (¢, x),...,{e,, x)

Query time: 1 Query time: n




Example Query Sets

Store x € [F;, and compute queries (g, x%Vhere gqe QCF

[ Query Input data ] Query set ]
(a1, x) (G, T)
\\\Querlz <q’$>//

| 0=F | Q: Set of all v/n x 1/n matrices
0: Hamming weight 2 vectors Q:{vivg=1v,=0,i€[n]}
(Partial Sums)
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Linear Data Structures

[Yao81, Fre81]
Store x € [F; and compute queries (g, x%Vhere gqe QCF,

In tdata] ]
[ Query pu Query set

(a1, x) (az2n, T)

|

1101 Xre //Y Yy

This is the case for general data structures as well!
RIS [oie04, Pat0s, PTWI0, Larl2]

Question: relationship between LT(Q, s), |Q|, n, s

log| Q]

Best known lower bound on LT(Q, s) for explicit Q:

log(s/n)



Linear Data Structures

[Yao81, Fre81]
Store x € [F;, and compute queries (g, x%Vhere gqe QCF,

[ Query Input data ] Query set ]
(a1, ) (a2n, T)
\\\Qul <q,a:>//

LT(Q, s): smallest query time among space s data structure

Question: relationship between LT(Q, s), |Q|, n, s

Best known lower bound on LT(Q, 2n) for explicit Q: log| Q|
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Want a subset QO C F, that is “far-away” from
any low dimensional subspace

- “small” random sets have this property
- interested in explicit sets

d1
q2
qs3

0, Low rank Row sparse
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Non-zero entries in B




Rectanqgular Rigidity iaevoo

Q C F, is (r,1)-rigid if for every r-dim subspace
V, there is a point ¢ € O at a Hamming distance
of at least ¢ from V.

Question: relationship between r,¢,n, | Q]|



Rectanqgular Rigidity iaevoo

Q C F, is (r,1)-rigid if for every r-dim subspace
V, there is a point ¢ € O at a Hamming distance
of at least ¢ from V.

Question: relationship between r,¢,n, | Q]|

Best known lower bounds for explicit O
[Fri93, SSS97, APY09, AC15].:

thin{ﬁ-log< 9 ),n}
r r




Rectanqgular Rigidity iaevoo

Q C F, is (r,1)-rigid if for every r-dim subspace
V, there is a point ¢ € O at a Hamming distance
of at least ¢ from V.

Question: relationship between r,t,n, | O]
Best known lower bounds for explicit O

[Fri93, SSS97/, APY09, AC15].:
t >log|Q|/n for r =n/2.



'DGW18]: Linear DS Lower Bounds
imply Rigidity Lower Bounds

Theorem:
If 0 C I, is explicit and LT(Q, 2n) = (log | 0| - log n),
then there exists a semi-explicit (P"") rigid set

Q' C I]:’é" that is (n’/2, 0, (log | O] )) rigid.



'DGW18]: Linear DS Lower Bounds
imply Rigidity Lower Bounds

Theorem:
If 0 C I, is explicit and LT(Q, 2n) = (log | 0| - log n),
then there exists a semi-explicit (P"") rigid set

Q' C I]:’é" that is <n’/2, 0, (log | O] )) rigid.

log| Q] is the best known log| Q] is the best known

lower bound for explicit sets lower bound for explicit sets




Key Lemma:

For ¢ > logn, if Q C I, is not (n/2, t/log n)-rigid, then
there exits Q’ such that

(@) dim(Q) < n/2

(b) LT(Q, 2n) < LT(Q’, n) + t/log n.
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Key Lemma:

For ¢ > logn, if Q C I, is not (n/2, t/log n)-rigid, then
there exits Q’ such that

(@) dim(Q’) <n/2

(b) LT(Q, 2n) &LT(Q’, n) + t/log n.

1.Recurse until Q' is a constant dimension
set.

2. In the process, either a rigid set is
found, OR

3.LT(Q, 2n) <t + O(1)

Exercise to show Q' can be obtained by a poly
time algorithm with access to an NP oracle
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Key Lemma:
If 0 C F;is not (n/2, t/logn)-rigid, then there exists a

Q' such that
(@) dim(Q") < n/2
(b) LT(Q, 2n) < LT(Q’, n) + t/log n.

Proof:

Since Q not rigid, there is a subspace V of dim n/2 such that
forq e Q, g =v,+u, satistying v, € Vand dy(u,) < t/logn.

Define Q"= {v,|q € 0}

(v,»x) With LT(Q’, n) queries and n space

Compute _
(q,x) = (v X) + Uy, X) = — (u,, x) With t/log n queries and » space
storing (e, x), ..., (e,, x)




'DGW18]: Linear DS Lower Bounds
imply Rigidity Lower Bounds

Theorem:
If 0 CF, is explicit and LT(Q, 2n) = (log | 0] - log n),
then there exists a semi-explicit (P"") rigid set

Q' C [F’é" that is <n’/2, 0 (log | O] )) rigid.

Remarks:

1. [DGW18]’s proof is more general. Shows a connection
between inner and outer dimension of matrices, measures
defined by [PPO6].

2. [DGW18]’s prove connections between other types of data
structures and rigidity.



Systematic Linear Model

'Val92, GM07, CKL18]

Store x € F, and compute queries (g,x), where g € Q C F,

[ Query/ﬁ mput data]




Systematic Linear Model

'Val92, GM07, CKL18]

Store x € F, and compute queries (g, x), where g € Q C F,

L1 L2 T3 Ln




Systematic Linear Model

'Val92, GM07, CKL18]

Store x € F,, and compute querles (q.x), where g e Q C F,

331 L2 T3 Ln

N/

Query: (q,x)




Systematic Linear Model

'Val92, GM07, CKL18]

Store x € F, and compute querles (q,x), wherege Q C F,

L1 L2 3 Ln
uery q,

Redundant bits: (a4, x), ..., {(a,x)
Query time: number of accesses to x
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A Data Structure Upper Bound

d1
q2
qs3

|
+

0 A: rank r B : t — sparse rows

Non-zero entries in B

Redundant bits: (a*,x), ..., (¢, x), where a*, ..., a* basis of A
Queries: ¢, = a,+ b, and (g, x) = {a;, x) + (b, x)
Query time: r accesses to compute (b, x) (t-sparse)
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Theorem [NRR19]: Q C F) is (r, 1)-rigid iff every
systematic linear data structure with
redundancy r has query time at least ¢



The Equivalence

Theorem [NRR19]: Q C F) is (r, 1)-rigid iff every
systematic linear data structure with
redundancy r has query time at least ¢

Redundancy: r

Query time > ¢ (r,)-rigia




The Equivalence

Theorem [NRR19]: Q C F) is (r, 1)-rigid iff every
systematic linear data structure with
redundancy r has query time at least ¢

Best known systematic linear lower bounds

IGMO7/, CKL18]: # > min {z-log< Q| ),n}
r r
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every systematic linear data structure with
redundancy r has query time at least ¢
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The Lower Bound

Theorem [NRR19]: If O C F) is (r, 1)-rigid then
every systematic linear data structure with
redundancy r has query time at least ¢

Proof:
Redundant bits given by (a,,x),...,{a,,x), and U = span(a, ...,a,)
g* at a distance of t from U = span(ay, ...,a,)
Claim: Query time to compute (g*, x) is at least t
Query accesses (a,, x), ..., {a,,x) and (e; ,x), ..., {¢; , x)
If U' = span(ay,...,a,e;, s €)r then d(g*, U) = 0. S0 k >t

I



Consequences for Linear
Data Structures

Theorem [NRR19]: If Q C F? and
LT(O, 2n) > w <\/10g O] - n), then there exists a O’ C [F’;

that is (k/2,1og| Q’|)-rigid.




Consequences for Linear
Data Structures

Theorem [NRR19]: If Q C F? and
LT(O, 2n) > w <\/10g O] - n), then there exists a O’ C [F’;

that is (k/2,1og| Q’|)-f{gid.

In contrast to [DGW18], need to prove
polynomial lower bounds on the query time

but will result in explicit rigid matrices.



Consequences for Linear
Data Structures

Theorem [NRR19]: If Q C F? and
LT(O, 2n) > w <\/10g O] - n), then there exists a Q' C F;
that is (k/2,1og| Q’|)-rigid.

Observation: If there is a systematic linear data

structure for Q with redundancy r and query time t,
then LT(QO,n+r) < 1t.
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Goal is to design an efficient data structure that

a) stores a \/n x \/n-bit matrix M

b) compute queries u™v (mod 2), where u, v
are v/n-bit vectors
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Vector-Matrix-Vector Problem

Goal is to design an efficient data structure that

a) stores a \/n x \/n-bit matrix M

b) compute queries u™v (mod 2), where u, v
are v/n-bit vectors

u

M v =Tr ((uvT)M) = ((vul), M)




Systematic Linear Model
[Val92,GM07,CKL18]

1 LIqut data ]

M vl =Tr ((uvT)M) = ((vuT), M)

Vam

Redundant bits: (A, M), ..., (A M)

Query time: number of accesses to M



Rigidity Lower Bound for
Vec-Mat-Vec

O = the set of vectors corresponding to {uvT}.

Theorem [NRR19]: If O is (r, 1)-rigid, then
{ > min {nl'S/r, n}

(A log n factor improvement over [CKL18])
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Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/5, and

(b) dM, V) > Q(n)

1. M =M, + ...+ M, where k = 2r/\/n and
each M. is rank 1.

2.5ince d(M, V) > Q(n), there is an M, such that
dM, V) > Qn'>/r)
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Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/5, and
(b) dM, V) > Q(n)

Proof: or or oo Dy

V = span(v, ..., v,)

Each V. is a projection of V
to 2r coordinates,
And dim(V)) <r Vi Z Vs

r




Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/5, and
(b) dM, V) > Q(n)

n
Proof: ) 2r  2r .- 2r
1

V2
V = span(v, ..., v,)
Each V. is a projection of V
to 2r coordinates, d
And dim(V)) <r Vi Z Vs

Claim: There exists a v’ € 5" such that d(v', V)) > Q(r)



Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/;, and
(b) dM, V) > Q(n)
Proof:
There exists a v’ € 5" such that d(v', V)) > Q(r)



Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/;, and

(b) dM,V) > Q(n)

Proof:
There exists a v’ € 5" such that d(v', V)) > Q(r)
n

< >

2r 2r o 2r

/ / /

V= 1% 1% 1%

By definition of v, d(v, V) > (n/2r) - Q(r) > Q(n)



Key Lemma: For every r-dim vector space V, there is
a \/n x/n matrix M with

(@) rank(M) < 2r/\/;, and

(b) dM, V) > Q(n)

Proof:
There exists a v’ € 5" such that d(v', V)) > Q(r)
n

< >

2r 2r o 2r

V= 1% 1% 1%
By definition of v, d(v, V) > (n/2r) - Q(r) > Q(n)

i

\\M: 4 » | 2riy/n




Rigidity Lower Bound for
Vec-Mat-Vec

O = the set of vectors corresponding to {uvT}.

Theorem [NRR19]: If O is (r, 1)-rigid, then
{ > min {nl'S/r, n}

(A log n factor improvement over [CKL18])



Open Questions

(@) Prove better rigidity bounds for {uvT}
(b) Improve explicithess guarantee in [DGW18]

(c) What are the rigidity implications for o (log | O] )
lower bounds for linear data structures?






