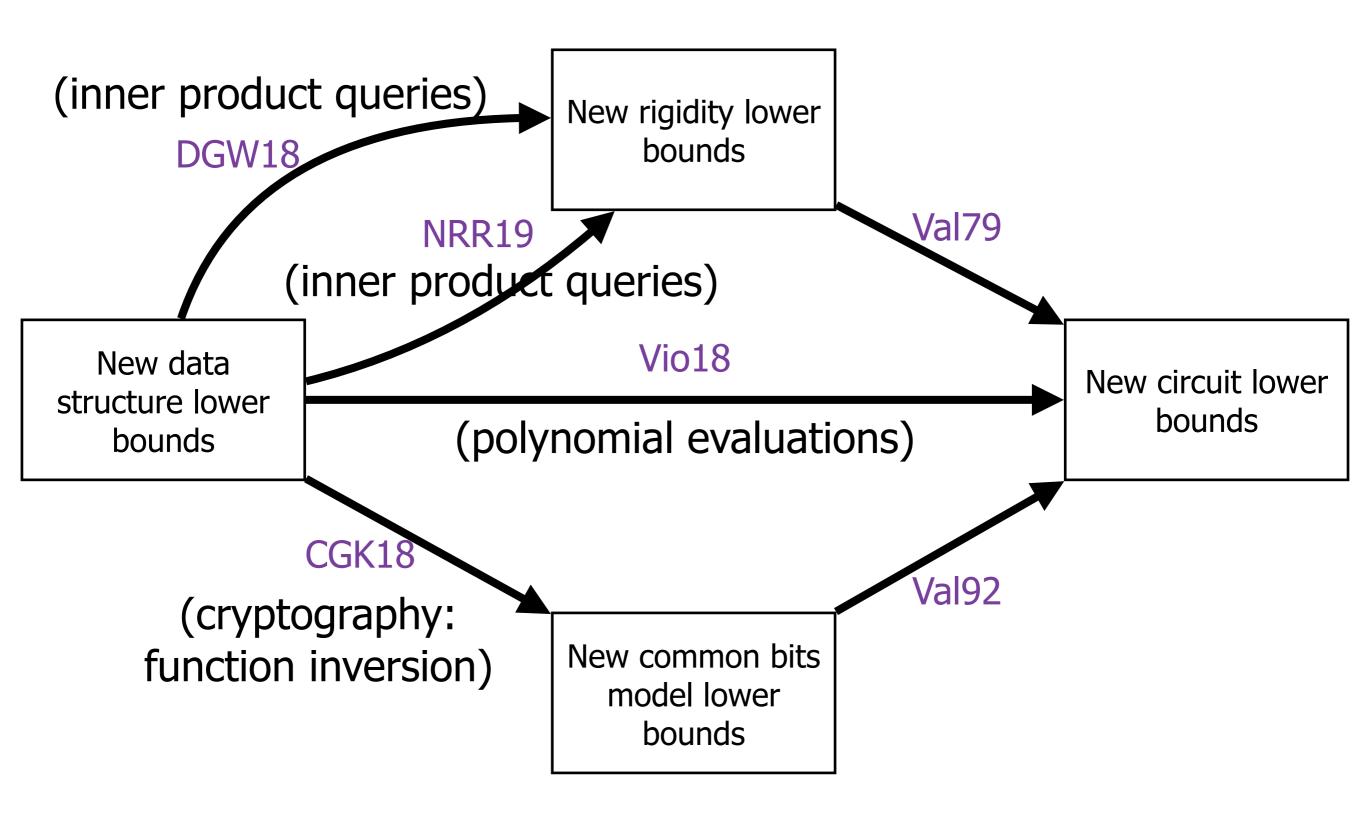
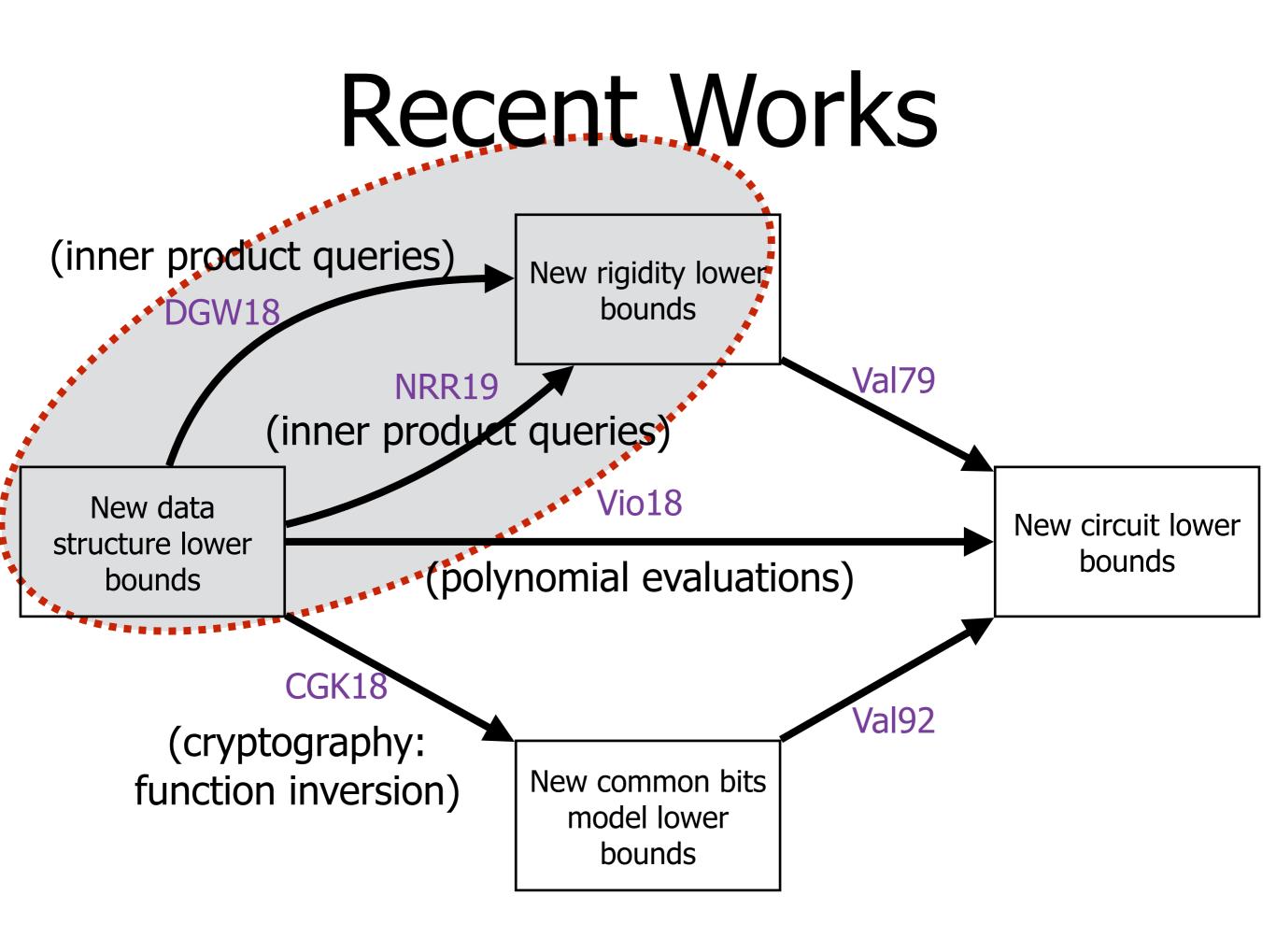
On Linear Data Structures and Matrix Rigidity

Sivaramakrishnan Natarajan RamamoorthyTheorem LP

Recent Works





Outline

- Linear data structures
- Rectangular rigidity
- Linear data structure lower bounds imply rigidity lower bounds — a result of [DGW18]
- Systematic linear data structures
 - Equivalence to rectangular rigidity
- Rigidity lower bound for Vector-Matrix-Vector problem

[Yao81, Fre81]

Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$

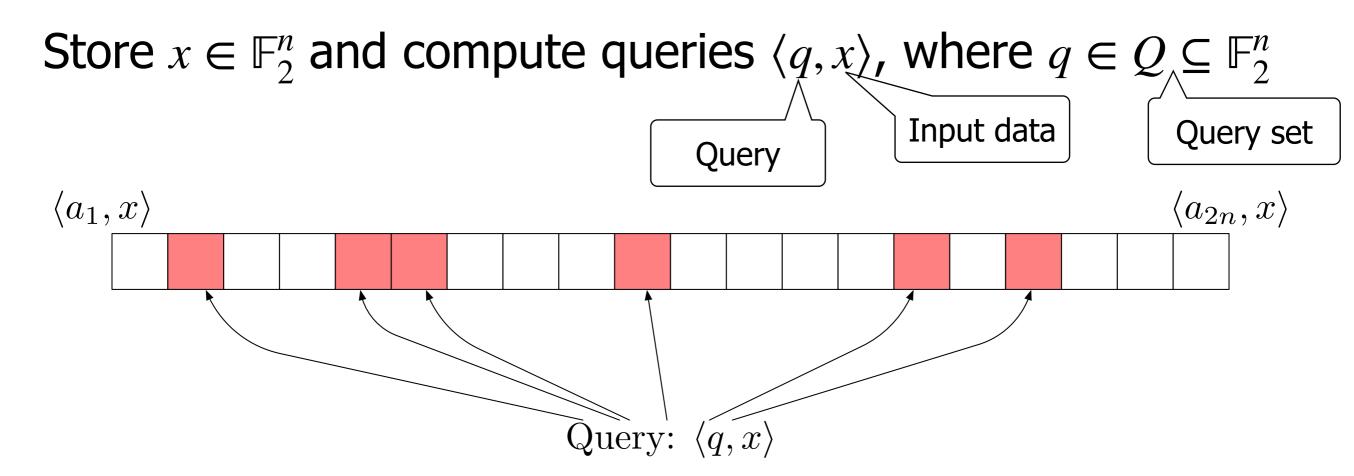
[Yao81, Fre81]

Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$ Query

Input data

Query Set

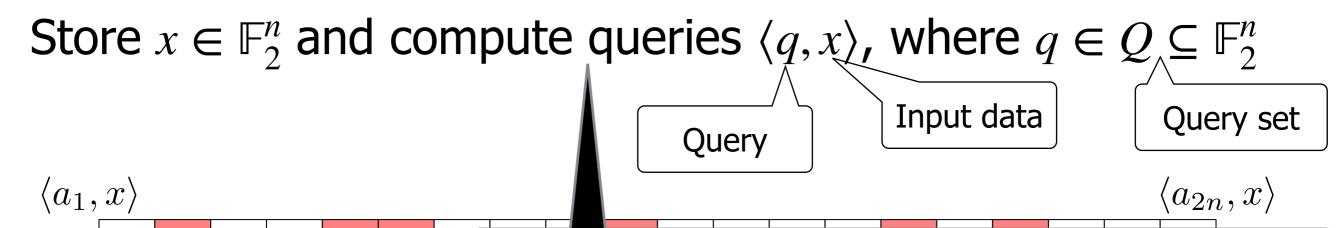
[Yao81, Fre81]



Store: $\langle a_1, x \rangle, ..., \langle a_{2n}, x \rangle$

Query time: number of accesses on ay query

[Yao81, Fre81]



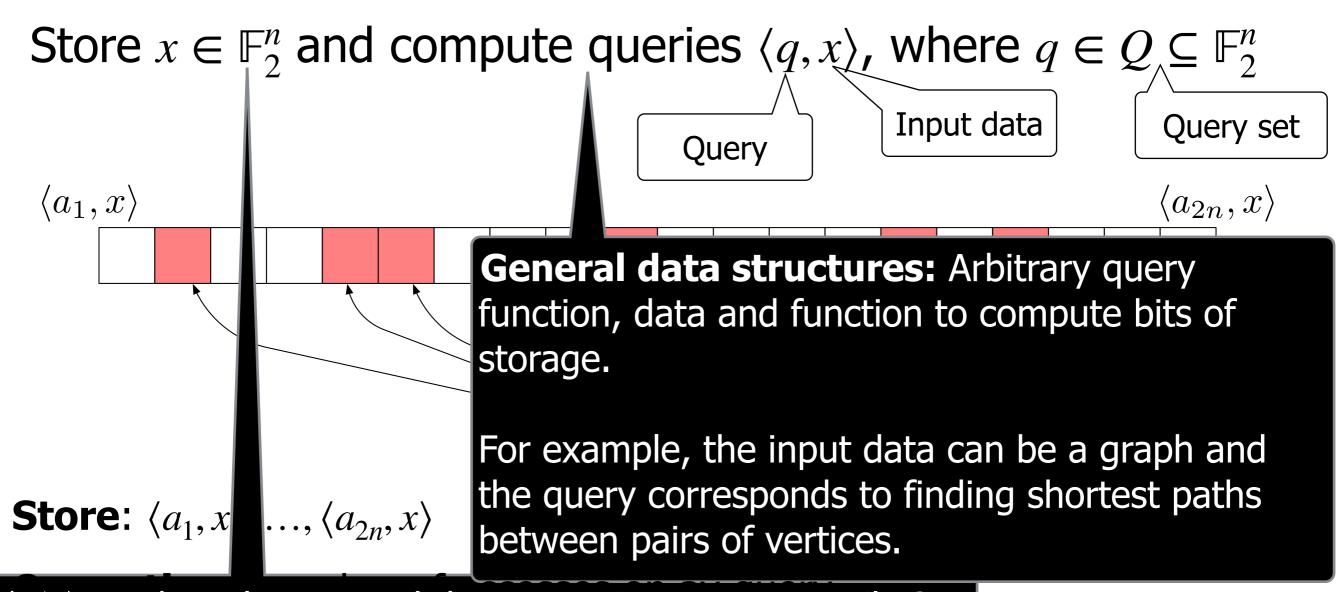
General data structures: Arbitrary query function, data and function to compute bits of storage.

Store: $\langle a_1, x \rangle, ..., \langle a_{2n}, x \rangle$

For example, the input data can be a graph and the query corresponds to finding shortest paths between pairs of vertices.

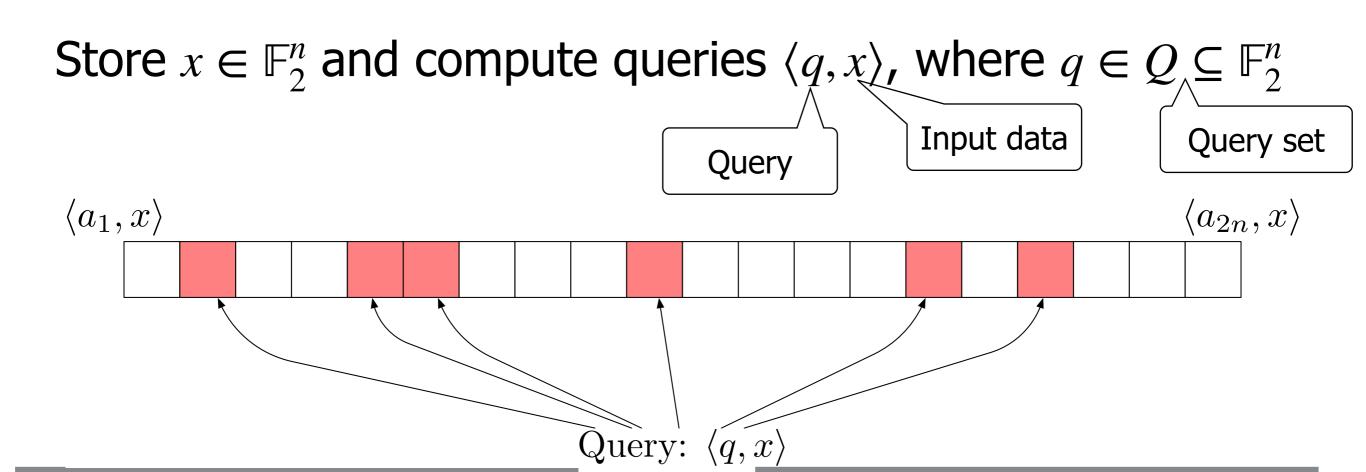
Query time: number of accesses on ay query

[Yao81, Fre81]



Field can be arbitrary and the space is not necessarily 2n.

Two Simple Data Structures



Store: $\langle q_1, x \rangle, ..., \langle q_{|Q|}, x \rangle$

Query time: 1

Store: $\langle e_1, x \rangle, ..., \langle e_n, x \rangle$

Query time: n

Example Query Sets

Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$ $\text{Query} \qquad \text{Input data} \qquad \text{Query set}$ $\langle a_1, x \rangle \qquad \qquad \langle a_{2n}, x \rangle$

 $\langle q, x \rangle$

Query:

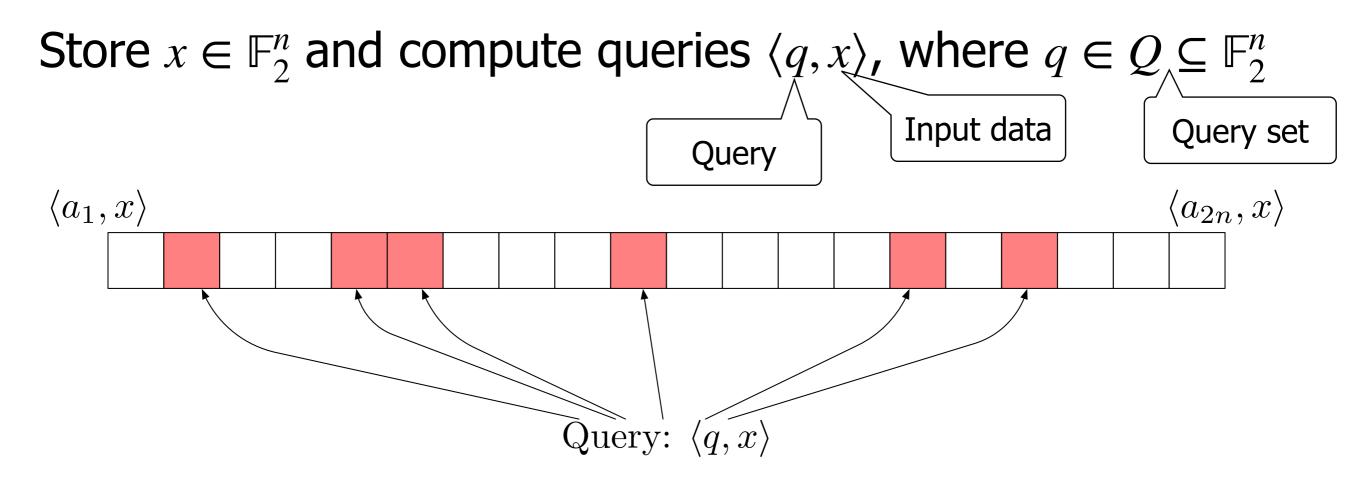
 $Q = \mathbb{F}_2^n$

Q: Set of all $\sqrt{n} \times \sqrt{n}$ matrices

Q: Hamming weight 2 vectors

 $Q: \{v: v_{\leq i} = 1, v_{>i} = 0, i \in [n]\}$ (Partial Sums)

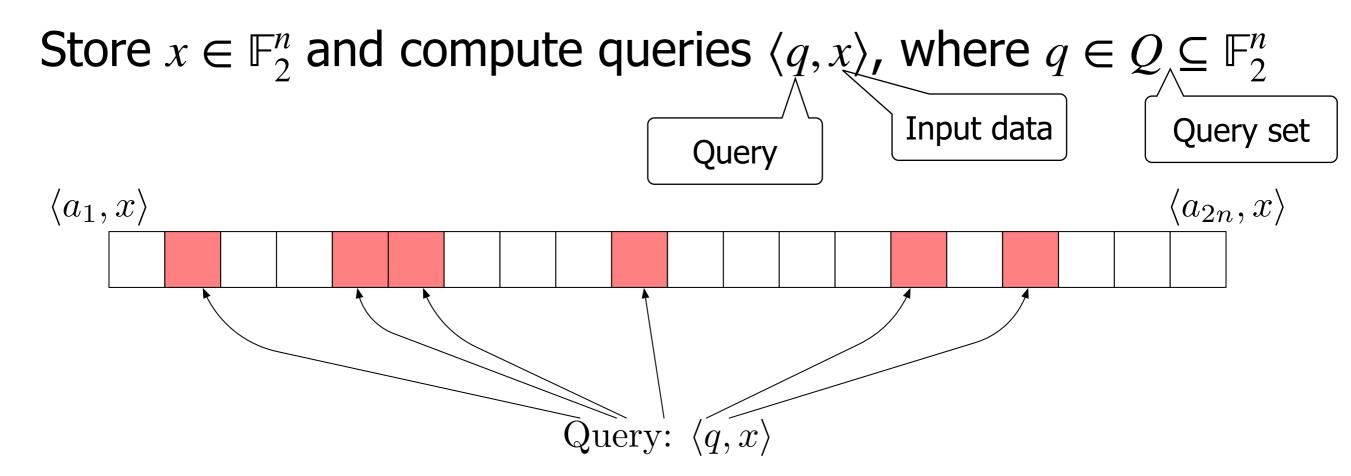
[Yao81, Fre81]



LT(Q, s): smallest query time among space s data structures

Question: relationship between LT(Q, s), |Q|, n, s

[Yao81, Fre81]

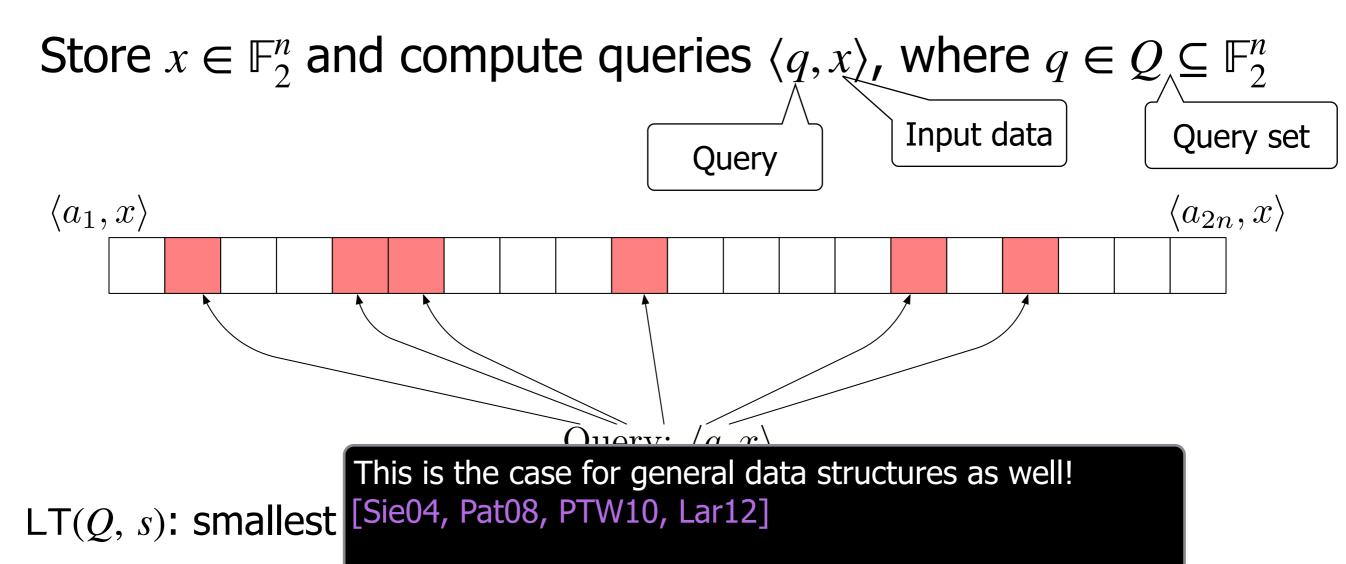


LT(Q, s): smallest query time among space s data structures

Question: relationship between LT(Q, s), |Q|, n, s

Best known lower bound on LT(Q, s) for explicit Q: $\frac{\log |Q|}{\log (s/n)}$

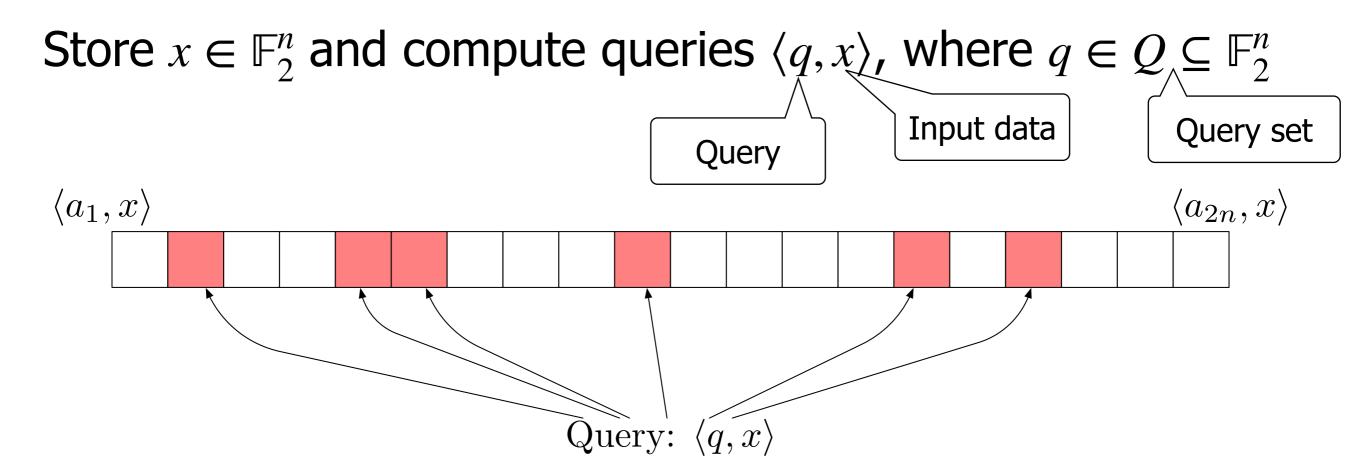
[Yao81, Fre81]



Question: relationship between LT(Q, s), |Q|, n, s

Best known lower bound on LT(Q, s) for explicit Q: $\frac{\log |Q|}{\log (s/n)}$

[Yao81, Fre81]



LT(Q, s): smallest query time among space s data structure

Question: relationship between LT(Q, s), |Q|, n, s

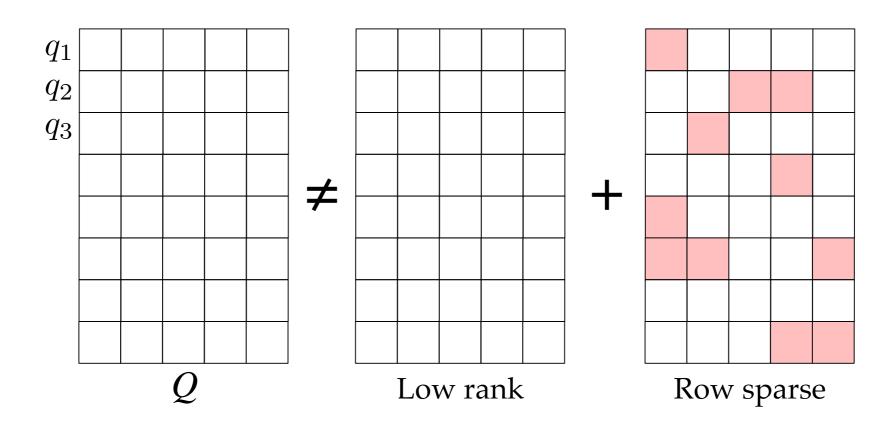
Best known lower bound on LT(Q, 2n) for explicit Q: $\log |Q|$

Want a subset $Q \subseteq \mathbb{F}_2^n$ that is "far-away" from any low dimensional subspace

- "small" random sets have this property
- interested in explicit sets

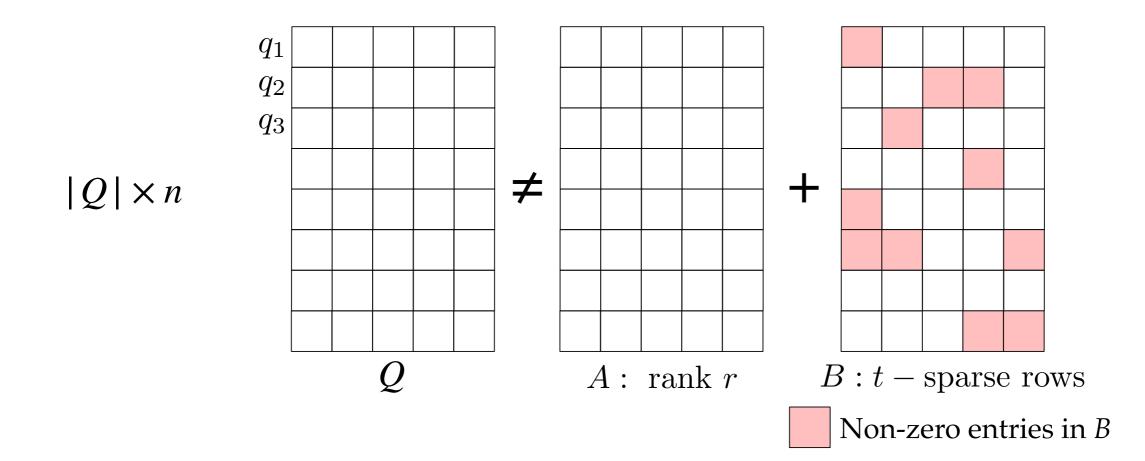
Want a subset $Q \subseteq \mathbb{F}_2^n$ that is "far-away" from any low dimensional subspace

- "small" random sets have this property
- interested in explicit sets



 $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid if for every r-dim subspace V, there is a point $q \in Q$ at a Hamming distance of at least t from V.

 $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid if for every r-dim subspace V, there is a point $q \in Q$ at a Hamming distance of at least t from V.



 $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid if for every r-dim subspace V, there is a point $q \in Q$ at a Hamming distance of at least t from V.

Question: relationship between r, t, n, |Q|

 $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid if for every r-dim subspace V, there is a point $q \in Q$ at a Hamming distance of at least t from V.

Question: relationship between r, t, n, |Q|

Best known lower bounds for explicit Q

[Fri93, SSS97, APY09, AC15]:

$$t \ge \min \left\{ \frac{n}{r} \cdot \log \left(\frac{|Q|}{r} \right), n \right\}$$

 $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid if for every r-dim subspace V, there is a point $q \in Q$ at a Hamming distance of at least t from V.

Question: relationship between r, t, n, |Q|

Best known lower bounds for explicit *Q* [Fri93, SSS97, APY09, AC15]:

 $t \ge \log |Q|/n$ for r = n/2.

[DGW18]: Linear DS Lower Bounds imply Rigidity Lower Bounds

Theorem:

If $Q \subseteq \mathbb{F}_2^n$ is explicit and $LT(Q, 2n) = \omega \left(\log |Q| \cdot \log n\right)$, then there exists a semi-explicit $\left(\mathsf{P}^{\mathsf{NP}}\right)$ rigid set $Q' \subseteq \mathbb{F}_2^{n'}$ that is $\left(n'/2, \omega \left(\log |Q|\right)\right)$ rigid.

[DGW18]: Linear DS Lower Bounds imply Rigidity Lower Bounds

Theorem:

If $Q \subseteq \mathbb{F}_2^n$ is explicit and $LT(Q, 2n) = \omega \left(\log |Q| \cdot \log n\right)$, then there exists a semi-explicit $\left(\mathsf{P}^{\mathsf{NP}}\right)$ rigid set $Q' \subseteq \mathbb{F}_2^{n'}$ that is $\left(n'/2, \omega \left(\log |Q|\right)\right)$ rigid.

 $\log |Q|$ is the best known lower bound for explicit sets

 $\log |Q|$ is the best known lower bound for explicit sets

For $t \ge \log n$, if $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exits Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) < LT(Q', n) + t/\log n$.

For $t \ge \log n$, if $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exits Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) LT(Q, 2n) \prec LT(Q', n) + $t/\log n$.
 - 1.Recurse until Q' is a constant dimension set.
 - 2. In the process, either a rigid set is found, OR
 - 3. LT(Q, 2n) $\leq t + O(1)$

For $t \ge \log n$, if $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exits Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) \prec LT(Q', n) + t/\log n$.
 - 1.Recurse until Q' is a constant dimension set.
 - 2. In the process, either a rigid set is found, OR
 - 3. LT(Q, 2n) $\leq t + O(1)$

Exercise to show Q' can be obtained by a poly time algorithm with access to an NP oracle

If $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exists a Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) < LT(Q', n) + t/\log n$.

Proof:

If $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exists a Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) < LT(Q', n) + t/\log n$.

Proof:

Since Q not rigid, there is a subspace V of dim n/2 such that for $q \in Q$, $q = v_q + u_q$ satisfying $v_q \in V$ and $d_H(u_q) < t/\log n$.

If $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exists a Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) < LT(Q', n) + t/\log n$.

Proof:

Since Q not rigid, there is a subspace V of dim n/2 such that for $q \in Q$, $q = v_q + u_q$ satisfying $v_q \in V$ and $d_H(u_q) < t/\log n$.

Define $Q' = \{v_q | q \in Q\}$

If $Q \subseteq \mathbb{F}_2^n$ is not $(n/2, t/\log n)$ -rigid, then there exists a Q' such that

- (a) $\dim(Q') \leq n/2$
- (b) $LT(Q, 2n) < LT(Q', n) + t/\log n$.

Proof:

Since Q not rigid, there is a subspace V of dim n/2 such that for $q \in Q$, $q = v_q + u_q$ satisfying $v_q \in V$ and $d_H(u_q) < t/\log n$.

Define
$$Q' = \{v_q | q \in Q\}$$

Compute
$$\langle v_q, x \rangle$$
 with LT(Q' , n) queries and n space $\langle q, x \rangle = \langle v_q, x \rangle + \langle u_q, x \rangle \longrightarrow \langle u_q, x \rangle$ with $t/\log n$ queries and n space storing $\langle e_1, x \rangle, \ldots, \langle e_n, x \rangle$

[DGW18]: Linear DS Lower Bounds imply Rigidity Lower Bounds

Theorem:

If $Q \subseteq \mathbb{F}_2^n$ is explicit and $LT(Q, 2n) = \omega \left(\log |Q| \cdot \log n\right)$, then there exists a semi-explicit $\left(\mathsf{P}^{\mathsf{NP}}\right)$ rigid set $Q' \subseteq \mathbb{F}_2^{n'}$ that is $\left(n'/2, \omega \left(\log |Q|\right)\right)$ rigid.

Remarks:

- 1. [DGW18]'s proof is more general. Shows a connection between **inner and outer dimension** of matrices, measures defined by [PP06].
- 2. [DGW18]'s prove connections between other types of data structures and rigidity.

[Val92, GM07, CKL18]

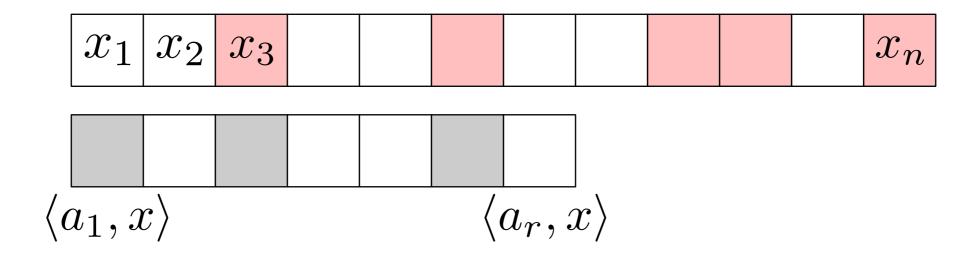
Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$ [Input data]

[Query]

[Query]

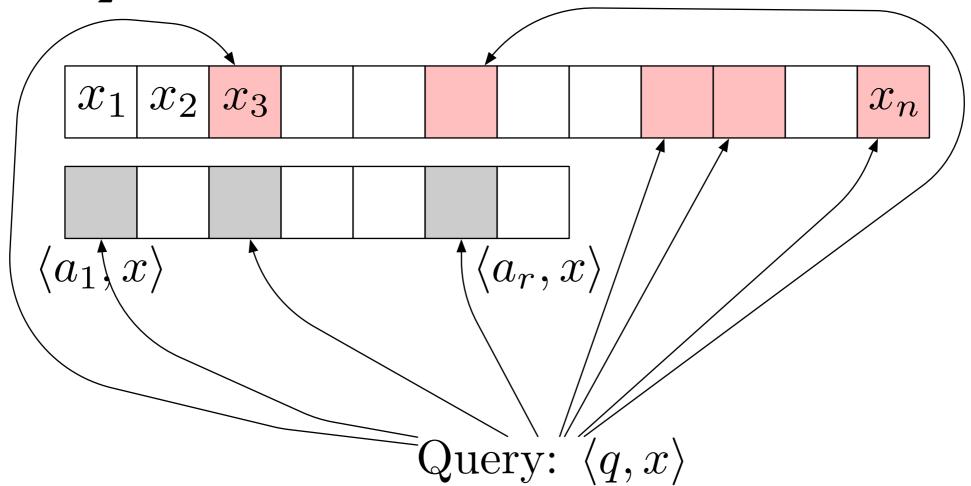
[Val92, GM07, CKL18]

Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$



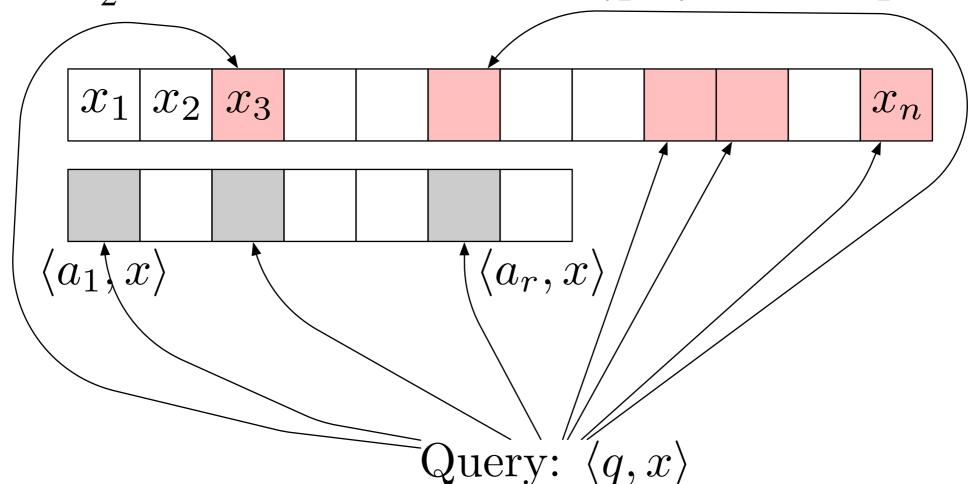
[Val92, GM07, CKL18]

Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$



[Val92, GM07, CKL18]

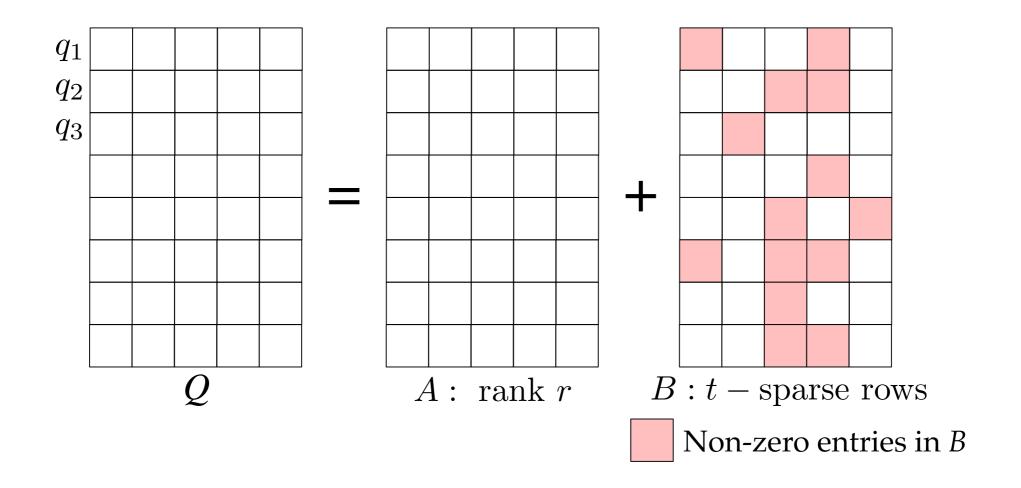
Store $x \in \mathbb{F}_2^n$ and compute queries $\langle q, x \rangle$, where $q \in Q \subseteq \mathbb{F}_2^n$



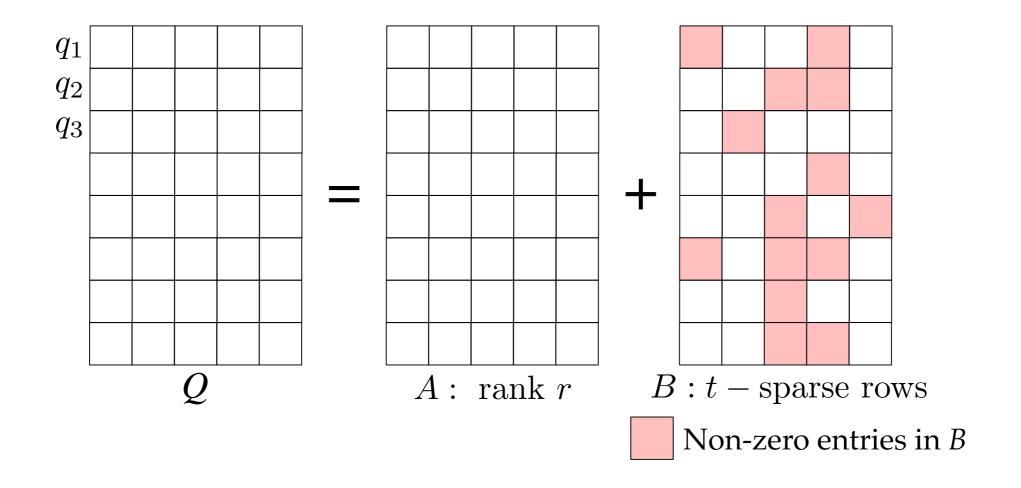
Redundant bits: $\langle a_1, x \rangle, ..., \langle a_r, x \rangle$

Query time: number of accesses to *x*

A Data Structure Upper Bound

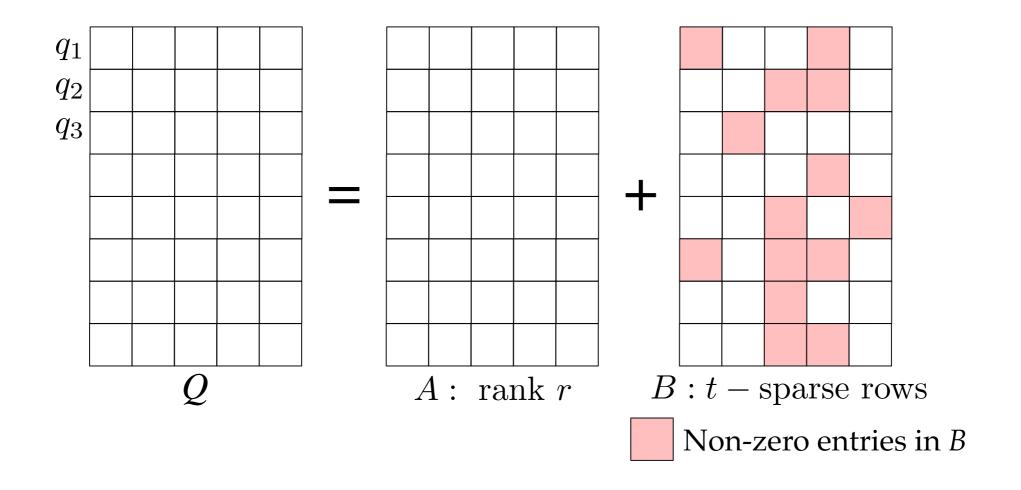


A Data Structure Upper Bound



Redundant bits: $\langle a_1^*, x \rangle, ..., \langle a_r^*, x \rangle$, where $a_1^*, ..., a_r^*$ basis of A

A Data Structure Upper Bound



Redundant bits: $\langle a_1^*, x \rangle, ..., \langle a_r^*, x \rangle$, where $a_1^*, ..., a_r^*$ basis of A

Queries: $q_i = a_i + b_i$, and $\langle q_i, x \rangle = \langle a_i, x \rangle + \langle b_i, x \rangle$

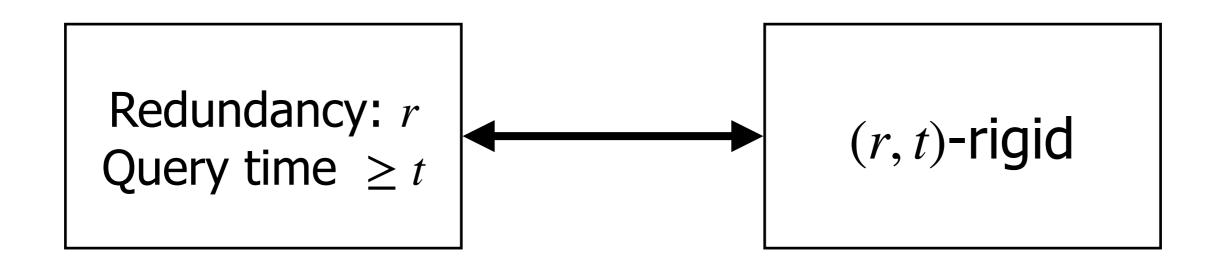
Query time: t accesses to compute $\langle b_i, x \rangle$ (t-sparse)

The Equivalence

Theorem [NRR19]: $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid **iff** every systematic linear data structure with redundancy r has query time at least t

The Equivalence

Theorem [NRR19]: $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid **iff** every systematic linear data structure with redundancy r has query time at least t



The Equivalence

Theorem [NRR19]: $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid **iff** every systematic linear data structure with redundancy r has query time at least t

Best known systematic linear lower bounds

[GM07, CKL18]:
$$t \ge \min \left\{ \frac{n}{r} \cdot \log \left(\frac{|Q|}{r} \right), n \right\}$$

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid then every systematic linear data structure with redundancy r has query time at least t

Proof:

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid then every systematic linear data structure with redundancy r has query time at least t

Proof:

Redundant bits given by $\langle a_1, x \rangle, ..., \langle a_r, x \rangle$, and $U = \text{span}(a_1, ..., a_r)$ q^* at a distance of t from $U = \text{span}(a_1, ..., a_r)$

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid then every systematic linear data structure with redundancy r has query time at least t

Proof:

Redundant bits given by $\langle a_1, x \rangle, ..., \langle a_r, x \rangle$, and $U = \text{span}(a_1, ..., a_r)$ q^* at a distance of t from $U = \text{span}(a_1, ..., a_r)$

Claim: Query time to compute $\langle q^*, x \rangle$ is at least t

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ is (r, t)-rigid then every systematic linear data structure with redundancy r has query time at least t

Proof:

Redundant bits given by $\langle a_1, x \rangle, ..., \langle a_r, x \rangle$, and $U = \operatorname{span}(a_1, ..., a_r)$ q^* at a distance of t from $U = \operatorname{span}(a_1, ..., a_r)$

Claim: Query time to compute $\langle q^*, x \rangle$ is at least t

Query accesses $\langle a_1, x \rangle, ..., \langle a_r, x \rangle$ and $\langle e_{i_1}, x \rangle, ..., \langle e_{i_k}, x \rangle$

If $U' = \text{span}(a_1, ..., a_r, e_{i_1}, ..., e_{i_k})$, then $d(q^*, U') = 0$. So $k \ge t$

Consequences for Linear Data Structures

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ and LT $(Q, 2n) \ge \omega \left(\sqrt{\log |Q| \cdot n} \right)$, then there exists a $Q' \subseteq \mathbb{F}_2^k$ that is $(k/2, \log |Q'|)$ -rigid.

Consequences for Linear Data Structures

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ and LT $(Q, 2n) \ge \omega \left(\sqrt{\log |Q| \cdot n} \right)$, then there exists a $Q' \subseteq \mathbb{F}_2^k$ that is $(k/2, \log |Q'|)$ -rigid.

In contrast to [DGW18], need to prove polynomial lower bounds on the query time but will result in explicit rigid matrices.

Consequences for Linear Data Structures

Theorem [NRR19]: If $Q \subseteq \mathbb{F}_2^n$ and LT $(Q, 2n) \ge \omega \left(\sqrt{\log |Q| \cdot n} \right)$, then there exists a $Q' \subseteq \mathbb{F}_2^k$ that is $(k/2, \log |Q'|)$ -rigid.

Observation: If there is a systematic linear data structure for Q with redundancy r and query time t, then $LT(Q, n + r) \le t$.

Vector-Matrix-Vector Problem

Goal is to design an efficient data structure that

a) stores a $\sqrt{n} \times \sqrt{n}$ -bit matrix Mb) compute queries $u^{\dagger}Mv \pmod{2}$, where u, vare \sqrt{n} -bit vectors

Vector-Matrix-Vector Problem

Goal is to design an efficient data structure that

- a) stores a $\sqrt{n} \times \sqrt{n}$ -bit matrix Mb) compute queries $u^{\dagger}Mv \pmod{2}$, where u, vare \sqrt{n} -bit vectors
- M V

Vector-Matrix-Vector Problem

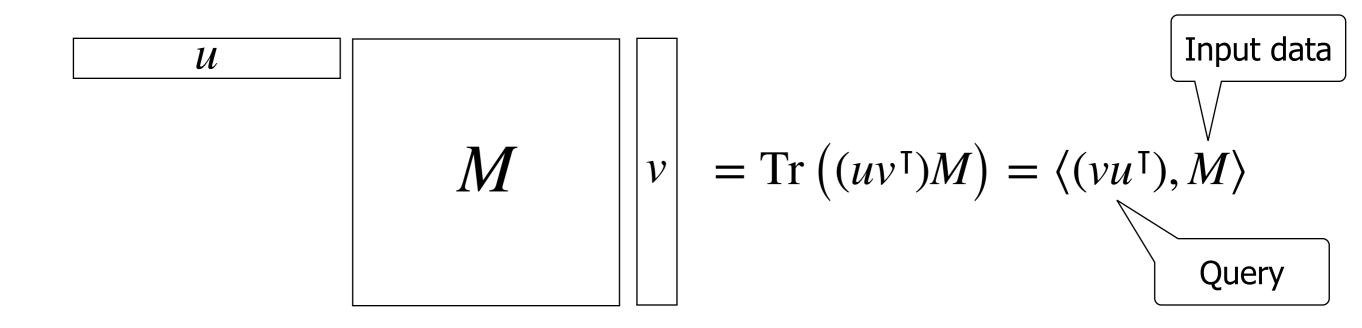
Goal is to design an efficient data structure that

a) stores a $\sqrt{n} \times \sqrt{n}$ -bit matrix M b) compute queries $u^{\intercal}Mv \pmod{2}$, where u, v are \sqrt{n} -bit vectors

$$M \qquad v = \operatorname{Tr}((uv^{\mathsf{T}})M) = \langle (vu^{\mathsf{T}}), M \rangle$$

Systematic Linear Model

[Val92,GM07,CKL18]



Redundant bits: $\langle A_1, M \rangle, ..., \langle A_r, M \rangle$

Query time: number of accesses to *M*

Rigidity Lower Bound for Vec-Mat-Vec

Q =the set of vectors corresponding to $\{uv^{\mathsf{T}}\}.$

Theorem [NRR19]: If Q is (r, t)-rigid, then $t \ge \min \{n^{1.5}/r, n\}$

(A $\log n$ factor improvement over [CKL18])

- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

(a)
$$\operatorname{rank}(M) \leq 2r/\sqrt{n_{|I|}}$$
 and

(b)
$$d(M, V) \ge \Omega(n)$$

- 1. $M = M_1 + ... + M_k$, where $k = 2r/\sqrt{n}$ and each M_i is rank 1.
- 2. Since $d(M, V) \ge \Omega(n)$, there is an M_i such that $d(M_i, V) \ge \Omega(n^{1.5}/r)$

- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

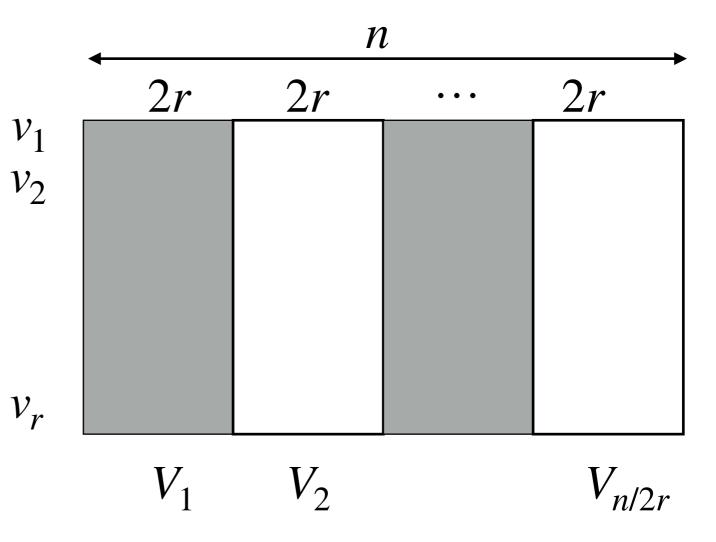
$$V = span(v_1, ..., v_r)$$

- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

$$V = span(v_1, ..., v_r)$$

Each V_i is a projection of V to 2r coordinates, And $\dim(V_i) \leq r$

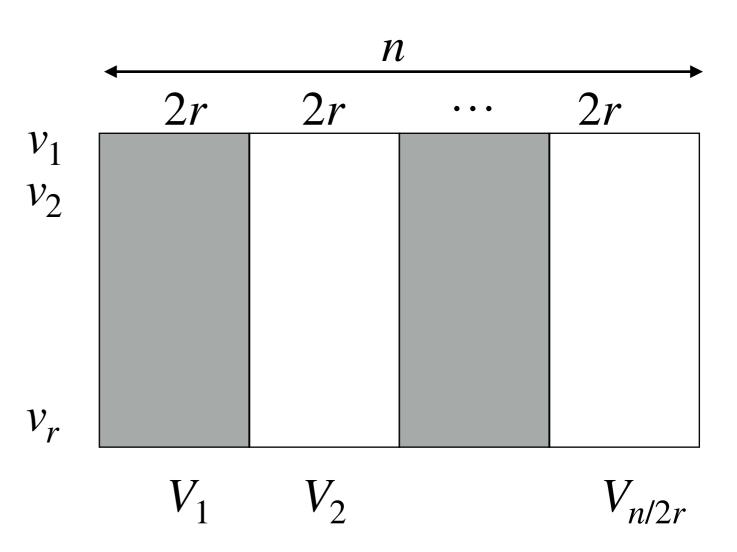


- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

$$V = span(v_1, ..., v_r)$$

Each V_i is a projection of V to 2r coordinates, And $\dim(V_i) \leq r$



Claim: There exists a $v' \in \mathbb{F}_2^{2r}$ such that $d(v', V_i) \geq \Omega(r)$

- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

There exists a $v' \in \mathbb{F}_2^{2r}$ such that $d(v', V_i) \ge \Omega(r)$

- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

There exists a $v' \in \mathbb{F}_2^{2r}$ such that $d(v', V_i) \ge \Omega(r)$

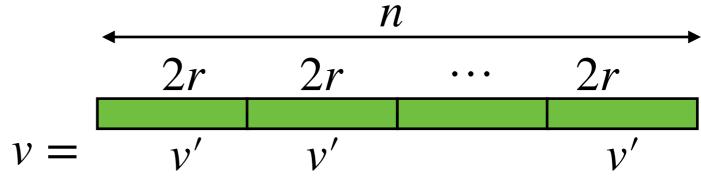


By definition of v, $d(v, V) \ge (n/2r) \cdot \Omega(r) \ge \Omega(n)$

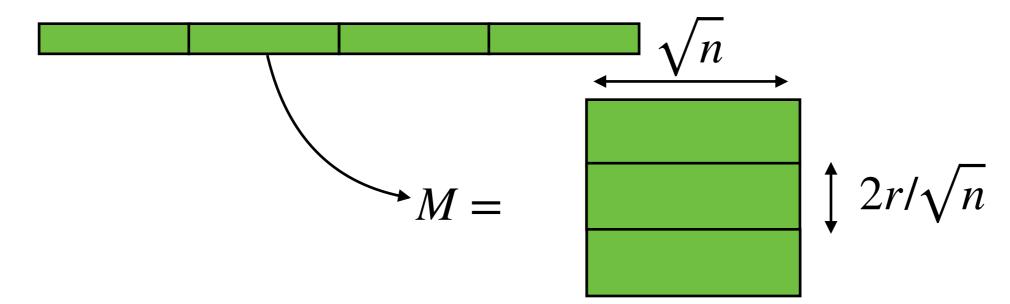
- (a) $\operatorname{rank}(M) \leq 2r/\sqrt{n}$, and
- (b) $d(M, V) \ge \Omega(n)$

Proof:

There exists a $v' \in \mathbb{F}_2^{2r}$ such that $d(v', V_i) \ge \Omega(r)$



By definition of v, $d(v, V) \ge (n/2r) \cdot \Omega(r) \ge \Omega(n)$



Rigidity Lower Bound for Vec-Mat-Vec

Q =the set of vectors corresponding to $\{uv^{\mathsf{T}}\}.$

Theorem [NRR19]: If Q is (r, t)-rigid, then $t \ge \min \{n^{1.5}/r, n\}$

(A $\log n$ factor improvement over [CKL18])

Open Questions

- (a) Prove better rigidity bounds for $\{uv^{\mathsf{T}}\}$
- (b) Improve explicitness guarantee in [DGW18]
- (c) What are the rigidity implications for $\omega (\log |Q|)$ lower bounds for linear data structures?

